REFERENCES
1. World Health Organization. Regional Office for South-East Asia. Draft Fourteenth General Programme of Work (GPW14) 2025-2028. https://iris.who.int/handle/10665/373010. (accessed 8 Sep 2025).
2. World Health Organization. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). (accessed 8 Sep 2025).
3. Du, Y.; Kim, J. H.; Kong, H.; et al. Biocompatible electronic skins for cardiovascular health monitoring. Adv. Healthc. Mater. 2024, 13, e2303461.
5. Caffè, A.; Animati, F. M.; Iannaccone, G.; Rinaldi, R.; Montone, R. A. Precision medicine in acute coronary syndromes. J. Clin. Med. 2024, 13, 4569.
6. Ahmed, M. R.; Newby, S.; Potluri, P.; Mirihanage, W.; Fernando, A. Emerging paradigms in fetal heart rate monitoring: evaluating the efficacy and application of innovative textile-based wearables. Sensors 2024, 24, 6066.
7. Yadav, A.; Yadav, N.; Wu, Y.; Ramakrishna, S.; Hongyu, Z. Wearable strain sensors: state-of-the-art and future applications. Mater. Adv. 2023, 4, 1444-59.
8. Liao, Y. T.; Yao, H.; Lingley, A.; Parviz, B.; Otis, B. P. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE. J. Solid. State. Circuits. 2012, 47, 335-44.
9. Yao, H.; Liao, Y.; Lingley, A. R.; et al. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J. Micromech. Microeng. 2012, 22, 075007.
10. Thomas, N.; Lähdesmäki, I.; Parviz, B. A contact lens with an integrated lactate sensor. Sens. Actuators. B. Chem. 2012, 162, 128-34.
11. Mannoor, M. S.; Tao, H.; Clayton, J. D.; et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012, 3, 763.
12. Kim, J.; Valdés-Ramírez, G.; Bandodkar, A. J.; et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 2014, 139, 1632-6.
13. Guinovart, T.; Parrilla, M.; Crespo, G. A.; Rius, F. X.; Andrade, F. J. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst 2013, 138, 5208-15.
14. Bandodkar, A. J.; Molinnus, D.; Mirza, O.; et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 2014, 54, 603-9.
15. Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends. Biotechnol. 2014, 32, 363-71.
16. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS. Nano. 2014, 8, 5154-63.
17. Park, B.; Kim, J.; Kang, D.; et al. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 2016, 28, 8130-7.
18. Liu, Z.; Qi, D.; Guo, P.; et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 2015, 27, 6230-7.
19. Kim, S. R.; Kim, J. H.; Park, J. W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS. Appl. Mater. Interfaces. 2017, 9, 26407-16.
20. Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345-52.
21. Chen, Z.; Qu, C.; Yao, J.; Zhang, Y.; Xu, Y. Two-stage micropyramids enhanced flexible piezoresistive sensor for health monitoring and human-computer interaction. ACS. Appl. Mater. Interfaces. 2024, 16, 7640-9.
22. Zhou, M.; Xu, Y.; Wang, C.; et al. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano. Energy. 2017, 31, 514-24.
23. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, e1801072.
24. Kim, K. H.; Hwang, A.; Song, Y.; et al. 3D hierarchical nanotopography for on-site rapid capture and sensitive detection of infectious microbial pathogens. ACS. Nano. 2021, 15, 4777-88.
25. Qu, X.; Xue, J.; Liu, Y.; Rao, W.; Liu, Z.; Li, Z. Fingerprint-shaped triboelectric tactile sensor. Nano. Energy. 2022, 98, 107324.
26. Yu, Q.; Zhang, Y. N.; Jiang, L.; Li, L.; Li, X.; Zhao, J. Flexible optical fiber sensor for non-invasive continuous monitoring of human physiological signals. Small. Methods. 2025, 9, e2401368.
27. Guo, J.; Zhou, B.; Yang, C.; Dai, Q.; Kong, L. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898.
28. Li, R.; Zhang, T.; Yu, Y.; Jiang, Y.; Zhang, X.; Wang, L. Flexible multilayer substrate based optical waveguides: applications to optical sensing. Sens. Actuators. A. Phys. 2014, 209, 57-61.
29. Sekine, M.; Furuya, M. Development of measurement method for temperature and velocity field with optical fiber sensor. Sensors 2023, 23, 1627.
30. Zhang, M.; Liu, Z.; Zhang, Y.; et al. Spider silk as a flexible light waveguide for temperature sensing. J. Lightwave. Technol. 2023, 41, 1884-9.
31. Funnell, A. C.; Thomas, P. J. Design of a flexible weight sensor using optical fibre macrobending. Sensors 2023, 23, 912.
32. Zhang, H.; Wu, J.; Gao, C. Research on the fabrication and parameters of a flexible fiber optic pressure sensor with high sensitivity. Photonics 2024, 11, 919.
33. To, C.; Hellebrekers, T.; Jung, J.; Yoon, S. J.; Park, Y. A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing. IEEE. Robot. Autom. Lett. 2018, 3, 3821-7.
34. Pathak, A. K.; Singh, V. K. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Opt. Fiber. Technol. 2017, 39, 43-8.
35. Ren, Y.; Mormile, P.; Petti, L.; Cross, G. H. Optical waveguide humidity sensor with symmetric multilayer configuration. Sens. Actuators. B. Chem. 2001, 75, 76-82.
36. Liang, L.; Xie, F.; Jin, L.; Yang, B.; Sun, L.; Guan, B. Optical microfiber biomedical sensors: classification, applications, and future perspectives. Adv. Sens. Res. 2025, 4, 2400185.
37. Jha, R.; Mishra, P.; Kumar, S. Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens. Bioelectron. 2024, 254, 116232.
38. Zha, B.; Wang, Z.; Ma, L.; et al. Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber. IEEE. Internet. Things. J. 2024, 11, 17317-29.
39. Luo, Z.; Li, M.; Kong, X.; et al. Advance on fiber optic-based biosensors for precision medicine: from diagnosis to therapy. Interdiscip. Med. 2023, 1, e20230022.
40. Quandt, B. M.; Scherer, L. J.; Boesel, L. F.; Wolf, M.; Bona, G. L.; Rossi, R. M. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles. Adv. Healthc. Mater. 2015, 4, 330-55.
41. Li, W.; Long, Y.; Yan, Y.; et al. Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification. Opto. Electron. Adv. 2025, 8, 240254.
42. Wang, Y.; Zhou, Y.; Qi, L.; Zhang, Y. Soft optical fibers for biomedical and wearable technologies: current trends and future prospects. Adv. Funct. Mater. 2025, 2507712.
43. De Chiara, F.; Wang, S.; Liu, H. Creating a soft tactile skin employing fluorescence based optical sensing. IEEE. Robot. Autom. Lett. 2020, 5, 3375-81.
44. Otsuka, R.; Zhang, S.; Hayashi, K.; Sassa, F. Active optical sensor microrobot equipped with multi-DoF gripper arm based on kinetic electronics. IEEE. Sens. Lett. 2023, 7, 1-4.
45. Kurochkin, M. A.; Sindeeva, O. A.; Brodovskaya, E. P.; et al. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. Mater. Sci. Eng. C. Mater. Biol. Appl. 2020, 110, 110664.
46. Zheng, D.; Pisano, F.; Collard, L.; et al. Toward plasmonic neural probes: SERS detection of neurotransmitters through gold-nanoislands-decorated tapered optical fibers with sub-10 nm gaps. Adv. Mater. 2023, 35, e2200902.
47. Jiang, Y.; Qi, W.; Zhang, Q.; et al. Green light-based photobiomodulation with an implantable and biodegradable fiber for bone regeneration. Small. Methods. 2020, 4, 1900879.
48. Teh, D. B. L.; Bansal, A.; Chai, C.; et al. A flexi-PEGDA upconversion implant for wireless brain photodynamic therapy. Adv. Mater. 2020, 32, e2001459.
49. Xiang, K.; Liu, M.; Chen, J.; et al. AI-assisted insole sensing system for multifunctional plantar-healthcare applications. ACS. Appl. Mater. Interfaces. 2024, 16, 32662-78.
50. Bae, S. H.; Kim, D.; Chang, S. Y.; et al. Hybrid integrated photomedical devices for wearable vital sign tracking. ACS. Sens. 2020, 5, 1582-8.
51. Mishra, P.; Sahu, P. K.; Kumar, H.; Jha, R. Human pulse and respiration monitoring: reconfigurable and scalable balloon-shaped fiber wearables. Adv. Mater. Technol. 2023, 8, 2300429.
52. Li, T.; Su, Y.; Chen, F.; et al. Bioinspired stretchable fiber-based sensor toward intelligent human-machine interactions. ACS. Appl. Mater. Interfaces. 2022, 14, 22666-77.
53. Pan, J.; Wang, Q.; Gao, S.; et al. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto. Electronic. Adv. 2023, 6, 230076.
54. Guo, J.; Shang, C.; Gao, S.; Zhang, Y.; Fu, B.; Xu, L. Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception. Adv. Mater. Technol. 2023, 8, 2201506.
55. Gong, Z.; Xiang, Z.; OuYang, X.; et al. Wearable fiber optic technology based on smart textile: a review. Materials 2019, 12, 3311.
56. Gan, J.; Yang, A.; Guo, Q.; Yang, Z. Flexible optical fiber sensing: materials, methodologies, and applications. Adv. Devices. Instrum. 2024, 5, 0046.
57. Rein, M.; Favrod, V. D.; Hou, C.; et al. Diode fibres for fabric-based optical communications. Nature 2018, 560, 214-8.
58. Koeppel, M.; Sharma, A.; Podschus, J.; et al. Doppler optical frequency domain reflectometry for remote fiber sensing: erratum. Opt. Express. 2021, 29, 24193.
59. Stellinga, D.; Phillips, D. B.; Mekhail, S. P.; et al. Time-of-flight 3D imaging through multimode optical fibers. Science 2021, 374, 1395-9.
60. Guo, J.; Yang, C.; Dai, Q.; Kong, L. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors 2019, 19, 3771.
61. Choi, M.; Choi, J. W.; Kim, S.; Nizamoglu, S.; Hahn, S. K.; Yun, S. H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics. 2013, 7, 987-94.
62. Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 2001, 13, 485-7.
63. Browning, M. B.; Wilems, T.; Hahn, M.; Cosgriff-Hernandez, E. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size. J. Biomed. Mater. Res. A. 2011, 98, 268-73.
64. Gaharwar, A. K.; Rivera, C. P.; Wu, C. J.; Schmidt, G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta. Biomater. 2011, 7, 4139-48.
65. Musumeci, G.; Loreto, C.; Castorina, S.; Imbesi, R.; Leonardi, R.; Castrogiovanni, P. New perspectives in the treatment of cartilage damage. Poly(ethylene glycol) diacrylate (PEGDA) scaffold. A review. Ital. J. Anat. Embryol. 2013, 118, 204-10.
66. Zhang, Z. F.; Ma, X.; Wang, H.; Ye, F. Influence of polymerization conditions on the refractive index of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Appl. Phys. A. 2018, 124, 1713.
67. Hakim Khalili, M.; Zhang, R.; Wilson, S.; Goel, S.; Impey, S. A.; Aria, A. I. Additive manufacturing and physicomechanical characteristics of PEGDA hydrogels: recent advances and perspective for tissue engineering. Polymers 2023, 15, 2341.
68. Yetisen, A. K.; Jiang, N.; Fallahi, A.; et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 2017, 29, 1606380.
69. Kwok, S. J. J.; Kim, M.; Lin, H. H.; et al. Flexible optical waveguides for uniform periscleral cross-linking. Invest. Ophthalmol. Vis. Sci. 2017, 58, 2596-602.
70. Martincek, I.; Pudis, D.; Chalupova, M. Technology for the preparation of PDMS optical fibers and some fiber structures. IEEE. Photon. Technol. Lett. 2014, 26, 1446-9.
71. Lu, C.; Park, S.; Richner, T. J.; et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 2017, 3, e1600955.
72. Martincek, I.; Pudis, D.; Gaso, P. Fabrication and optical characterization of strain variable PDMS biconical optical fiber taper. IEEE. Photon. Technol. Lett. 2013, 25, 2066-9.
73. Wang, Z.; Volinsky, A. A.; Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 2014, 131, app.41050.
74. Johnston, I. D.; Mccluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.
75. Darby, D. R.; Cai, Z.; Mason, C. R.; Pham, J. T. Modulus and adhesion of Sylgard 184, Solaris, and Ecoflex 00-30 silicone elastomers with varied mixing ratios. J. Appl. Polym. Sci. 2022, 139, e52412.
76. Li, Y.; Hu, J.; Cao, D.; Wang, S.; Dasgupta, P.; Liu, H. Optical-waveguide based tactile sensing for surgical instruments of minimally invasive surgery. Front. Robot. AI. 2021, 8, 773166.
77. Vaicekauskaite, J.; Mazurek, P.; Vudayagiri, S.; Skov, A. L. Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers. J. Mater. Chem. C. 2020, 8, 1273-9.
78. Cheng, X.; Miao, L.; Su, Z.; et al. Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator. Microsyst. Nanoeng. 2017, 3, 16074.
79. Nizamoglu, S.; Gather, M. C.; Humar, M.; et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 2016, 7, 10374.
80. Kim, M.; An, J.; Kim, K. S.; et al. Optical lens-microneedle array for percutaneous light delivery. Biomed. Opt. Express. 2016, 7, 4220-7.
81. Bergström, J. S.; Hayman, D. An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann. Biomed. Eng. 2016, 44, 330-40.
82. Zhao, H.; O’Brien, K.; Li, S.; Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, eaai7529.
83. Hu, L.; Chee, P. L.; Sugiarto, S.; et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, e2205326.
84. Sadeque, M. S. B.; Chowdhury, H. K.; Rafique, M.; et al. Hydrogel-integrated optical fiber sensors and their applications: a comprehensive review. J. Mater. Chem. C. 2023, 11, 9383-424.
85. Shabahang, S.; Kim, S.; Yun, S. H. Light-guiding biomaterials for biomedical applications. Adv. Funct. Mater. 2018, 28, 1706635.
86. Nurlidar, F.; Rahayu, D. P.; Lasmawati, D.; Yunus, A. L.; Heryani, R.; Suryani, N. A simple method for the simultaneous encapsulation of ciprofloxacin into PEGDA/alginate hydrogels using gamma irradiation. Arab. J. Chem. 2023, 16, 104793.
87. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; et al. Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2012, 2, 2-11.
88. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704-17.
89. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639-56.
90. Sun, S.; Cui, Y.; Yuan, B.; et al. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1117647.
91. Paneer Selvam, S.; Ayyappan, S.; I Jamir, S.; Sellappan, L. K.; Manoharan, S. Recent advancements of hydroxyapatite and polyethylene glycol (PEG) composites for tissue engineering applications - a comprehensive review. Eur. Polym. J. 2024, 215, 113226.
92. Zhang, Y.; Zhang, J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid. Interface. Sci. 2005, 283, 352-7.
93. Xin, H.; Li, Y.; Liu, X.; Li, B.
94. Choi, M.; Humar, M.; Kim, S.; Yun, S. H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 2015, 27, 4081-6.
95. Li, W.; Lin, M.; Wang, C.; et al.
96. Jin, H.; Yoon, S. S.; Kim, S. C. Synthesis and characterization of interpenetrating polymer networks from polyurethane and poly(ethylene glycol) diacrylate. J. Appl. Polym. Sci. 2008, 109, 805-12.
97. Li, J.; Hao, Y.; Zhong, M.; Tang, L.; Nie, J.; Zhu, X. Synthesis of furan derivative as LED light photoinitiator: one-pot, low usage, photobleaching for light color 3D printing. Dyes. Pigments. 2019, 165, 467-73.
98. Kaastrup, K.; Aguirre-Soto, A.; Wang, C.; Bowman, C. N.; Stansbury, J.; Sikes, H. D. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2. Polym. Chem. 2016, 7, 592-602.
99. Fairbanks, B. D.; Schwartz, M. P.; Bowman, C. N.; Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 2009, 30, 6702-7.
100. Sun, G.; Pan, X.; Zhong, Y.; Chen, E.; Huang, Y.; Shao, J. Blue light induced polymerization kinetics of polyethylene glycol diacrylate hydrogel. Polym. Mater. Sci. Eng. 2022.
101. LeValley, P. J.; Noren, B.; Kharkar, P. M.; Kloxin, A. M.; Gatlin, J. C.; Oakey, J. S. Fabrication of functional biomaterial microstructures by in situ photopolymerization and photodegradation. ACS. Biomater. Sci. Eng. 2018, 4, 3078-87.
102. Bae, J.; Park, J.; Kim, S.; et al. Tailored hydrogels for biosensor applications. J. Ind. Eng. Chem. 2020, 89, 1-12.
103. Liu, R.; Fan, X.; Fu, X.; et al. Synthesis and properties of thermo-sensitive PEG hydrogel. Fine. Chem. 2018, 35, 429-36. http://en.cnki.com.cn/Article_en/CJFDTotal-JXHG201803011.htm. (accessed 8 Sep 2025).
104. Li, Z.; Mi, W.; Wang, H.; Su, Y.; He, C. Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids. Surf. B. Biointerfaces. 2014, 123, 959-64.
105. Wang, L.; Zhong, C.; Ke, D.; et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 2018, 6, 1800427.
106. Shanks, R. A.; Kong, I. General purpose elastomers: structure, chemistry, physics and performance. In Advances in Elastomers I: Blends and Interpenetrating Networks; Visakh, P. M., Thomas, S., Chandra, A. K., Mathew, Aji. P., Eds.; vol 11; Springer: Berlin, Heidelberg, 2013; pp. 11-45.
107. Miranda, I.; Souza, A.; Sousa, P.; et al. Properties and applications of PDMS for biomedical engineering: a review. J. Funct. Biomater. 2021, 13, 2.
108. Khanafer, K.; Duprey, A.; Schlicht, M.; Berguer, R. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed. Microdevices. 2009, 11, 503-8.
109. Prajzler, V.; Nekvindova, P.; Spirkova, J.; Novotny, M. The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J. Mater. Sci. Mater. Electron. 2017, 28, 7951-61.
110. Lamberti, A.; Marasso, S. L.; Cocuzza, M. PDMS membranes with tunable gas permeability for microfluidic applications. RSC. Adv. 2014, 4, 61415-9.
111. Fan, X.; Huang, Y.; Ding, X.; et al. Alignment-free liquid-capsule pressure sensor for cardiovascular monitoring. Adv. Funct. Mater. 2018, 28, 1805045.
112. Qian, X.; Cai, Z.; Su, M.; et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 2018, 30, e1800291.
113. Rothmaier, M.; Luong, M. P.; Clemens, F. Textile pressure sensor made of flexible plastic optical fibers. Sensors 2008, 8, 4318-29.
114. Leber, A.; Cholst, B.; Sandt, J.; Vogel, N.; Kolle, M. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv. Funct. Mater. 2019, 29, 1802629.
115. Qu, Y.; Nguyen-Dang, T.; Page, A. G.; et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 2018, 30, e1707251.
116. Fu, R.; Luo, W.; Nazempour, R.; et al. Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater. 2018, 6, 1700941.
117. Qin, H.; Owyeung, R. E.; Sonkusale, S. R.; Panzer, M. J. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing. J. Mater. Chem. C. 2019, 7, 601-8.
118. Wu, S. D.; Hsu, S. H.; Ketelsen, B.; et al. Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications. Small. Methods. 2023, 7, e2300170.
119. Hu, H.; Sun, S.; Lv, R.; Zhao, Y. Design and experiment of an optical fiber micro bend sensor for respiration monitoring. Sens. Actuators. A. Phys. 2016, 251, 126-33.
120. Praveena, S.; Melwin, G.; Babu, P. R.; Senthilnathan, K. MoS2 sensitized tapered fiber optic evanescent wave sensor for refractive index based glucose sensing application. Curr. Appl. Phys. 2025, 77, 46-56.
121. Li, Y.; Luo, S.; Gui, Y.; Wang, X.; Tian, Z.; Yu, H. Difunctional hydrogel optical fiber fluorescence sensor for continuous and simultaneous monitoring of glucose and pH. Biosensors 2023, 13, 287.
122. Li, J.; Li, H.; Long, Z.; Meng, L.; Guo, H.; Lv, M. Wearable multifunctional optical sensor based on Er3+/Yb3+ co-doped Gd2O3 nanoparticles and tapered U-shaped fiber. Opt. Lett. 2025, 50, 281-4.
123. Li, H.; Ma, S.; Ding, M.; et al. New class of optical blood glucose sensors based on a PMMA Mach–Zehnder interferometer. ACS. Photonics. 2024, 11, 1684-92.
124. Levi, A.; Piovanelli, M.; Furlan, S.; Mazzolai, B.; Beccai, L. Soft, transparent, electronic skin for distributed and multiple pressure sensing. Sensors 2013, 13, 6578-604.
125. Peng, W.; Liao, Q.; Song, H. A nanograting-based flexible and stretchable waveguide for tactile sensing. Nanoscale. Res. Lett. 2021, 16, 23.
126. He, R.; Shen, L.; Wang, Z.; et al. Optical fiber sensors for heart rate monitoring: a review of mechanisms and applications. Results. Opt. 2023, 11, 100386.
127. Youn, J.; Mun, H.; Jang, S.; Kyung, K. Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator. Smart. Mater. Struct. 2022, 31, 015043.
128. Huang, X.; Yang, M.; Liu, T.; Su, H.; Cui, X. An approach on a new variable amplitude waveform sensor. Optik 2017, 132, 52-66.
129. Yun, S.; Jeong, J.; Mun, S.; Kyung, K. A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart. Mater. Struct. 2021, 30, 105020.
130. Al-Lami, S. S.; Atea, H.; Salman, A. M.; Al-Janabi, A. Adjustable optical fiber displacement-curvature sensor based on macro-bending losses with a coding of optical signal intensity. Sens. Actuators. A. Phys. 2024, 373, 115403.
131. Min, R.; Hu, X.; Pereira, L.; et al. Polymer optical fiber for monitoring human physiological and body function: a comprehensive review on mechanisms, materials, and applications. Opt. Laser. Technol. 2022, 147, 107626.
132. Guo, J.; Niu, M.; Yang, C. Highly flexible and stretchable optical strain sensing for human motion detection. Optica 2017, 4, 1285.
133. Mäntele, W.; Deniz, E. UV-VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2017, 173, 965-8.
134. Wang, W.; Li, Z.; Zhao, R.; He, Y.; Tao, G.; Hou, C. Stretchable polymer optical fiber with an unusual relationship between optical loss and elongation. J. Lightwave. Technol. 2024, 42, 3370-5.
135. Huong, A.; Ngu, X. Quantitative analysis of spectroscopy data for skin oximetry. In Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering. Association for Computing Machinery; 2016. pp. 46-9.
136. Fuente, D.; Lizama, C.; Urchueguía, J. F.; Conejero, J. A. Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions. J. Quant. Spectrosc. Radiat. Transf. 2018, 204, 23-6.
137. Nagar, M. A.; Janner, D. Polymer-based optical guided-wave biomedical sensing: from principles to applications. Photonics 2024, 11, 972.
138. Pendão, C.; Silva, I. Optical fiber sensors and sensing networks: overview of the main principles and applications. Sensors 2022, 22, 7554.
139. Jakubowski, K.; Huang, C.; Boesel, L. F.; Hufenus, R.; Heuberger, M. Recent advances in photoluminescent polymer optical fibers. Curr. Opin. Solid. State. Mater. Sci. 2021, 25, 100912.
140. Shin, Y. H.; Teresa, Gutierrez-Wing. M. T.; Choi, J. W. Review - recent progress in portable fluorescence sensors. J. Electrochem. Soc. 2021, 168, 017502.
141. Wang, Q.; Liao, M.; Lin, Q.; Xiong, M.; Mu, Z.; Wu, F. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys. Compd. 2021, 850, 156744.
142. Li, Z.; Lan, N.; Cheng, Z.; et al.
143. Stich, M. I.; Fischer, L. H.; Wolfbeis, O. S. Multiple fluorescent chemical sensing and imaging. Chem. Soc. Rev. 2010, 39, 3102-14.
145. Bilro, L.; Alberto, N.; Pinto, J. L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors 2012, 12, 12184-207.
146. Zhao, C.; Liu, D.; Cai, Z.; et al. A wearable breath sensor based on fiber-tip microcantilever. Biosensors 2022, 12, 168.
147. Sirkis, T.; Beiderman, Y.; Agdarov, S.; Beiderman, Y.; Zalevsky, Z. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors. Nanoscale. Imag. Sens. Actuat. Biomed. Appl. 2017, 10077, 100770A.
148. Measures, R. M. Fiber-optic-based smart structures. In Encyclopedia of Physical Science and Technolog. 2003. pp. 769-802.
149. Shao, M.; Yuan, Y.; Liu, Y.; Fu, H.; Qiao, X. All-fiber michelson interferometer for heart rate and breath monitoring. IEEE. Sensors. J. 2024, 24, 23909-17.
150. Zheng, M.; Shen, Y.; Zou, Q.; et al. Moisture-driven switching of plasmonic bound states in the continuum in the visible region. Adv. Funct. Mater. 2023, 33, 2209368.
151. Chen, G.; Hou, K.; Yu, N.; et al. Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat. Commun. 2022, 13, 7789.
152. Zhang, W.; Ju, L.; Jia, H.; Ding, X.; Feng, Y. Semiring-optic-fiber (SROF) sensor-based abnormal gait recognition via monitoring muscle activation. IEEE. Sensors. J. 2023, 23, 19307-17.
153. Wang, S.; Liu, B.; Wang, Y.; et al. Machine-learning-based human motion recognition via wearable plastic-fiber sensing system. IEEE. Internet. Things. J. 2023, 10, 17893-904.
154. Wang, Z.; Chen, Z.; Ma, L.; et al. Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber. ACS. Appl. Mater. Interfaces. 2024, 16, 8333-45.
155. Li, L.; Sheng, S.; Liu, Y.; et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX 2023, 4, 99.
156. Sui, K.; Meneghetti, M.; Kaur, J.; Sørensen, R. J. F.; Berg, R. W.; Markos, C. Drug delivery and optical neuromodulation using a structured polymer optical fiber with ultra-high NA. In Proceedings of the Optogenetics and Optical Manipulation. 2023.
157. Zheng, W. L.; Zhang, Y. N.; Li, L. K.; Li, X. G.; Zhao, Y. A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosens. Bioelectron. 2022, 198, 113798.
158. Jiang, Q.; Liang, X.; Chen, Z.; et al. Wearable strain sensor integrating mechanoluminescent fiber with a flexible printed circuit. Opt. Lett. 2024, 49, 1221-4.
159. Nguyen, P. Q.; Soenksen, L. R.; Donghia, N. M.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366-74.
160. Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.
161. Serajuddin, A. T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999, 88, 1058-66.
162. Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN. Pharm. 2012, 2012, 195727.
163. Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 2020, 181, 151-67.
164. Dreiss, C. A. Hydrogel design strategies for drug delivery. Curr. Opin. Colloid. Interface. Sci. 2020, 48, 1-17.
165. Sandoval-Yañez, C.; Escobar, L.; Amador, C. A. The advantages of polymeric hydrogels in calcineurin inhibitor delivery. Processes 2020, 8, 1331.
166. Hu, Y.; Minzioni, P.; Hui, J.; Yun, S.; Yetisen, A. K. Fiber optic devices for diagnostics and therapy in photomedicine. Adv. Opt. Mater. 2024, 12, 2400478.
167. Bajgrowicz-Cieslak, M.; Alqurashi, Y.; Elshereif, M. I.; Yetisen, A. K.; Hassan, M. U.; Butt, H. Optical glucose sensors based on hexagonally-packed 2.5-dimensional photonic concavities imprinted in phenylboronic acid functionalized hydrogel films. RSC. Adv. 2017, 7, 53916-24.
168. Elsherif, M.; Hassan, M. U.; Yetisen, A. K.; Butt, H. Hydrogel optical fibers for continuous glucose monitoring. Biosens. Bioelectron. 2019, 137, 25-32.
169. Guo, J.; Zhou, B.; Du, Z.; Yang, C.; Kong, L.; Xu, L. Soft and plasmonic hydrogel optical probe for glucose monitoring. Nanophotonics 2021, 10, 3549-58.
170. Davies, S.; Hu, Y.; Blyth, J.; Jiang, N.; Yetisen, A. K. Reusable dual-photopolymerized holographic glucose sensors. Adv. Funct. Mater. 2023, 33, 2214197.
171. Ujah, E.; Lai, M.; Slaughter, G. Ultrasensitive tapered optical fiber refractive index glucose sensor. Sci. Rep. 2023, 13, 4495.
172. Wen, X.; Liu, Y.; Liu, Q.; et al. Glucose sensing based on hydrogel grating incorporating phenylboronic acid groups. Opt. Express. 2022, 30, 47541-52.
173. Ahmed, I.; Elsherif, M.; Ali, M.; Al Ghaferi, A.; Mohammad, B.; Butt, H. Photonic hydrogel for continuous glucose monitoring using smartphone readout. Mater. Design. 2023, 231, 112065.
174. Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13399-403.
175. Li, Y.; Liu, W.; Liu, R.; et al. 3D hybrid arrayed Ag/MOF multi-plasmon resonant cavity system for high-performance SPR sensing. Opt. Laser. Technol. 2023, 167, 109825.
176. Ahmed, I.; El Turk, S.; Al Ghaferi, A.; Samad, Y. A.; Butt, H. Nanocomposite hydrogel-based optical fiber probe for continuous glucose sensing. Small. Sci. 2024, 4, 2300189.
177. Deng, C.; Zhao, Q.; Gan, Y.; et al. High-sensitivity hemoglobin detection based on polarization-differential spectrophotometry. Biosens. Bioelectron. 2023, 241, 115667.
178. Rahad, R.; Rakib, A.; Haque, M. A.; Sharar, S. S.; Sagor, R. H. Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: an exploration of biological biomarkers. Results. Phys. 2023, 49, 106478.
179. Luo, M.; Wang, Q. A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection. Alex. Eng. J. 2021, 60, 4115-20.
180. Safaee, M. M.; Gravely, M.; Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Adv. Funct. Mater. 2021, 31, 2006254.
181. Guo, Y.; Zheng, J.; Wang, Z.; Chen, G.; Hou, K.; Zhu, M. Biocompatible optical fiber for photomedical application. Giant 2023, 16, 100195.
182. Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 2013, 42, 530-47.
183. Brown, S. B.; Brown, E. A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet. Oncol. 2004, 5, 497-508.
184. Lai, B.; Loshchenov, M.; Douplik, A.; et al. Three-dimensional fluence rate measurement and data acquisition system for minimally invasive light therapies. Rev. Sci. Instrum. 2009, 80, 043104.
185. Zein, R.; Selting, W.; Hamblin, M. R. Review of light parameters and photobiomodulation efficacy: dive into complexity. J. Biomed. Opt. 2018, 23, 1-17.
186. Huang, Y. Y.; Sharma, S. K.; Carroll, J.; Hamblin, M. R. Biphasic dose response in low level light therapy - an update. Dose. Response. 2011, 9, 602-18.
187. de Freitas, L. F.; Hamblin, M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE. J. Sel. Top. Quantum. Electron. 2016, 22, 7000417.
188. Courtois, E.; Guy, J. B.; Axisa, F.; et al. Photobiomodulation by a new optical fiber device: analysis of the in vitro impact on proliferation/migration of keratinocytes and squamous cell carcinomas cells stressed by X-rays. Lasers. Med. Sci. 2021, 36, 1445-54.
189. Naeser, M. A.; Zafonte, R.; Krengel, M. H.; et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma. 2014, 31, 1008-17.
190. Pan, W. T.; Liu, P. M.; Ma, D.; Yang, J. J. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J. Transl. Med. 2023, 21, 135.
191. Lee, T. L.; Ding, Z.; Chan, A. S. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing. Res. Rev. 2023, 83, 101786.
192. Shen, J.; Chui, C.; Tao, X. Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express. 2013, 4, 2925-37.
193. Zuo, X.; Liang, Z.; Zhang, J.; et al. Photobiomodulation and diffusing optical fiber on spinal cord’s impact on nerve cells from normal spinal cord tissue in piglets. Lasers. Med. Sci. 2022, 37, 259-67.
194. Liang, Z.; Lei, T.; Wang, S.; et al. Photobiomodulation by diffusing optical fiber on spinal cord: a feasibility study in piglet model. J. Biophotonics. 2020, 13, e201960022.
195. Canales, A.; Jia, X.; Froriep, U. P.; et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277-84.
196. Tan, P.; He, L.; Huang, Y.; Zhou, Y. Optophysiology: illuminating cell physiology with optogenetics. Physiol. Rev. 2022, 102, 1263-325.
197. Tsakas, A.; Tselios, C.; Ampeliotis, D.; Politi, C.; Alexandropoulos, D. (INVITED)Review of optical fiber technologies for optogenetics. Results. Opt. 2021, 5, 100168.
198. Gutierrez, D. V.; Mark, M. D.; Masseck, O.; et al. Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J. Biol. Chem. 2011, 286, 25848-58.
199. Chen, S.; Wang, Z.; Xiao, K.; et al. A comprehensive review of optical fiber technologies in optogenetics and their prospective developments in future clinical therapies. Opt. Laser. Technol. 2024, 179, 111332.
200. Park, S.; Guo, Y.; Jia, X.; et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 2017, 20, 612-9.
201. Sharma, K.; Jäckel, Z.; Schneider, A.; Paul, O.; Diester, I.; Ruther, P. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats. J. Neural. Eng. 2021, 18, 066013.
202. Domingues, M. F.; Alberto, N.; Leitao, C. S. J.; et al. Insole optical fiber sensor architecture for remote gait analysis - an e-health solution. IEEE. Internet. Things. J. 2019, 6, 207-14.
203. Avellar, L.; Frizera, A.; Leal-Junior, A. POF Smart Pants: a fully portable optical fiber-integrated smart textile for remote monitoring of lower limb biomechanics. Biomed. Opt. Express. 2023, 14, 3689-704.
204. Leal-Junior, A. G.; Díaz, C. R.; Pontes, M. J.; Marques, C.; Frizera, A. Polymer optical fiber-embedded, 3D-printed instrumented support for microclimate and human-robot interaction forces assessment. Opt. Laser. Technol. 2019, 112, 323-31.
205. Zhou, H.; Wang, X.; He, Y.; et al. Distributed strain sensor based on self-powered, stretchable mechanoluminescent optical fiber. Adv. Intell. Syst. 2023, 5, 2300113.
206. Hou, B.; Yi, L.; Li, C.; et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 2022, 5, 682-93.
207. Koyama, S.; Haseda, Y.; Ishizawa, H.; Okazaki, F.; Bonefacino, J.; Tam, H. Measurement of pulsation strain at the fingertip using a plastic FBG sensor. IEEE. Sensors. J. 2021, 21, 21537-45.
208. Li, J.; Chen, J.; Xu, F. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv. Mater. Technol. 2018, 3, 1800296.
209. Liang, H.; Wang, Y.; Kan, L.; et al. Wearable and multifunctional self-mixing microfiber sensor for human health monitoring. IEEE. Sensors. J. 2023, 23, 2122-7.
210. Wang, X.; Zhou, H.; Chen, M.; et al. Wearable ultrasensitive and rapid human physiological monitoring based on microfiber Sagnac interferometer. Sci. China. Inf. Sci. 2024, 67, 3870.
211. Pan, J.; Jiang, C.; Zhang, Z.; Zhang, L.; Wang, X.; Tong, L. Flexible liquid-filled fiber adapter enabled wearable optical sensors. Adv. Mater. Technol. 2020, 5, 2000079.
212. Bonefacino, J.; Tam, H. Y.; Glen, T. S.; et al. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light. Sci. Appl. 2018, 7, 17161.
213. Lo Presti, D.; Bianchi, D.; Massaroni, C.; Gizzi, A.; Schena, E. A soft and skin-interfaced smart patch based on fiber optics for cardiorespiratory monitoring. Biosensors 2022, 12, 363.
214. Yi, Y.; Jiang, Y.; Zhao, H.; Brambilla, G.; Fan, Y.; Wang, P. High-performance ultrafast humidity sensor based on microknot resonator-assisted mach-zehnder for monitoring human breath. ACS. Sens. 2020, 5, 3404-10.
215. Bao, W.; Chen, F.; Lai, H.; Liu, S.; Wang, Y. Wearable breath monitoring based on a flexible fiber-optic humidity sensor. Sens. Actuators. B. Chem. 2021, 349, 130794.
216. Zhang, Z.; Kang, Y.; Yao, N.; et al. A multifunctional airflow sensor enabled by optical micro/nanofiber. Adv. Fiber. Mater. 2021, 3, 359-67.
217. Zhang, H.; Wang, Z.; Teng, C.; Kumar, S.; Li, X.; Min, R. Wearable cardiorespiratory sensor for real-time monitoring with smartphone integration. IEEE. Trans. Instrum. Meas. 2024, 73, 1-10.
218. Shen, L.; Wang, Z.; Xiao, K.; et al. WaveFlex sensor: advancing wearable cardiorespiratory monitoring with flexible wave-shaped polymer optical fiber. IEEE. J. Select. Topics. Quantum. Electron. 2024, 30, 1-9.
219. Bai, H.; Li, S.; Barreiros, J.; Tu, Y.; Pollock, C. R.; Shepherd, R. F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848-52.
220. Yang, W.; Gong, W.; Gu, W.; et al. Self-powered interactive fiber electronics with visual-digital synergies. Adv. Mater. 2021, 33, e2104681.
221. Khan, H.; Soomro, A. M.; Samad, A.; et al. Highly sensitive mechano-optical strain sensors based on 2D materials for human wearable monitoring and high-end robotic applications. J. Mater. Chem. C. 2022, 10, 932-40.
222. Qu, J.; Mao, B.; Li, Z.; et al. Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Funct. Mater. 2023, 33, 2306249.
223. Xin, Y.; Zhou, X.; Bark, H.; Lee, P. S. The role of 3D printing technologies in soft grippers. Adv. Mater. 2024, 36, e2307963.
224. Mason, M. T. Toward robotic manipulation. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 1-28.
225. Billard, A.; Kragic, D. Trends and challenges in robot manipulation. Science 2019, 364, eaat8414.
227. Jiang, C.; Zhang, Z.; Pan, J.; Wang, Y.; Zhang, L.; Tong, L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv. Mater. Technol. 2021, 6, 2100285.
228. Shang, K.; He, C.; Zhou, J.; et al. Optical and electrical dual-mode tactile sensor with interlinked interfaces recording normal force and slip for closed-loop robotics. Chem. Eng. J. 2023, 475, 146279.
229. Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal. Transduct. Target. Ther. 2021, 6, 426.
230. Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2022, 7, 83-103.
231. Cui, C.; Fu, Q.; Meng, L.; Hao, S.; Dai, R.; Yang, J. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS. Appl. Bio. Mater. 2021, 4, 85-121.
232. Yu, H.; Peng, Y.; Yang, Y.; Li, Z. Plasmon-enhanced light–matter interactions and applications. npj. Comput. Mater. 2019, 5, 184.
233. Liu, C.; Wu, T.; Lalanne, P.; Maier, S. A. Enhanced light-matter interaction in metallic nanoparticles: a generic strategy of smart void filling. Nano. Lett. 2024, 24, 4641-8.
234. Guo, Q.; Zhang, X. A review of mechanochromic polymers and composites: from material design strategy to advanced electronics application. Compos. Part. B. Eng. 2021, 227, 109434.