REFERENCES

1. Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renew Sustain Energy Rev 2016;57:1568-79.

2. Duan J, Yu B, Liu K, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 2019;57:473-9.

3. Wang H, Zhuang X, Xie W, et al. Thermosensitive-CsI3-crystal-driven high-power I-/I3- thermocells. Cell Rep Phys Sci 2022;3:100737.

4. Gao X, Chen G, Sun J, Dong S, Cui G. A review on realizing rechargeable batteries based on SOCl2/SO2 electrolyte systems. MetalMat 2024;1:e19.

5. Wu M, Sun K, He J, et al. Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters. Adv Funct Mater 2023;33:2305039.

6. Zhang D, Sia SA, Solco SFD, Xu J, Suwardi A. Energy harvesting through thermoelectrics: topological designs and materials jetting technology. Soft Sci 2023;3:1.

7. Liu Z, Cheng H, Le Q, Chen R, Li J, Ouyang J. Giant thermoelectric properties of ionogels with cationic doping. Adv Energy Mater 2022;12:2200858.

8. Yang Y, Lee SW, Ghasemi H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy. Proc Natl Acad Sci U S A 2014;111:17011-6.

9. Rahimi M, Straub AP, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ Sci 2018;11:276-85.

10. Wu M, Cui H, Cai S, et al. Weak electron-phonon coupling and enhanced thermoelectric performance in n-type PbTe-Cu2 Se via dynamic phase conversion. Adv Energy Mater 2023;13:2203325.

11. Soo XYD, Tan SY, Cheong AKH, et al. Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation. Exploration 2024;4:20230016.

12. Yun J. Recent progress in thermal management for flexible/wearable devices. Soft Sci 2023;3:12.

13. Yang R, Li X, Guo W, et al. New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chin J Struct Chem 2024;43:100268.

14. Xu C, Sun Y, Zhang J, Xu W, Tian H. Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting. Adv Energy Mater 2022;12:2201542.

15. Liu Y, Zhang S, Zhou Y, et al. Advanced wearable thermocells for body heat harvesting. Adv Energy Mater 2020;10:2002539.

16. Cao T, Shi X, Li M, et al. Advances in bismuth-telluride-based thermoelectric devices: progress and challenges. eScience 2023;3:100122.

17. Fan Y, Xie C, Li J, et al. Engineering thermoelectric performance of α -GeTe by ferroelectric distortion. Energy Environ Mater 2024;7:e12535.

18. Hong M, Sun S, Lyu W, et al. Advances in printing techniques for thermoelectric materials and devices. Soft Sci 2023;3:29.

19. Shen L, Liu M, Liu P, et al. A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower without degenerated conductivity. Soft Sci 2023;3:20.

20. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.

21. Zong Y, Li H, Li X, et al. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem Eng J 2022;433:134550.

22. Guo M, Cui H, Guo W, et al. Achieving superior thermoelectric performance in Ge4Se3 Te via symmetry manipulation with I-V-VI2 alloying. Adv Funct Mater 2024;34:2313720.

23. Liu Z, Cheng H, He H, Li J, Ouyang J. Significant enhancement in the thermoelectric properties of ionogels through solid network engineering. Adv Funct Mater 2022;32:2109772.

24. Rehan M, Cho A, Jeong I, et al. Defect engineering in earth-abundant Cu2 ZnSnSe4 absorber using efficient alkali doping for flexible and tandem solar cell applications. Energy Environ Mater 2024;7:e12604.

25. Ming H, Luo ZZ, Chen Z, et al. Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering leading to high thermoelectric performance in SnTe. J Am Chem Soc 2024;Online ahead of print.

26. Chen Z, Cui H, Hao S, et al. GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-type PbS. Energy Environ Sci 2023;16:1676-84.

27. Satoh N, Otsuka M, Kawakita J, Mori T. A hierarchical design for thermoelectric hybrid materials: Bi2Te3 particles covered by partial Au skins enhance thermoelectric performance in sticky thermoelectric materials. Soft Sci 2022;2:15.

28. He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019;365:1418-24.

29. Dupont MF, MacFarlane DR, Pringle JM. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem Commun 2017;53:6288-302.

30. Yu B, Duan J, Cong H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020;370:342-6.

31. Han Y, Zhang J, Hu R et al. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci Adv 2022;8:eabl5318.

32. Lu X, Xie D, Zhu K, et al. Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors. Nanomicro Lett 2023;15:196.

33. Zhang D, Mao Y, Ye F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ Sci 2022;15:2974-82.

34. Li Q, Han C, Wang S, et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K-CH3SO3K. eScience 2023;3:100169.

35. Shi X, Ma L, Li Y, et al. Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv Funct Mater 2023;33:2211720.

36. Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci 2023;3:10.

37. Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater 2019;18:608-13.

38. Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science 2020;368:1091-8.

39. Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X. Low-grade thermal energy harvesting and self-powered sensing based on thermogalvanic hydrogels. Micromachines 2023;14:155.

40. Duan J, Feng G, Yu B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat Commun 2018;9:5146.

41. Lin Y, Hsu C, Hong S, et al. Highly conductive triple network hydrogel thermoelectrochemical cells with low-grade heat harvesting. J Power Sources 2024;609:234647.

42. Hu J, Wei J, Li J, Bai L, Liu Y, Li Z. Double selective ionic gel with excellent thermopower and ultra-high energy density for low-quality thermal energy harvesting. Energy Environ Sci 2024;17:1664-76.

43. Li Q, Yu D, Wang S, et al. High thermopower of agarose-based ionic thermoelectric Gel through micellization effect decoupling the cation/anion thermodiffusion. Adv Funct Mater 2023;33:2305835.

44. Zhang Z, Fu H, Li Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications. Chem Eng J 2022;439:135756.

45. Li L, Wu P, Yu F, Ma J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J Mater Chem A 2022;10:9215-47.

46. Huang H, Dong Z, Ren X, et al. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications. Nano Res 2023;16:3475-515.

47. Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024;272:132583.

48. Wang Y, Xiang Y, Huang Q, et al. High-strength ionic hydrogel constructed by metal-free physical crosslinking strategy for enhanced uranium extraction from seawater. Chem Eng J 2024;479:147875.

49. Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev 2023;63:574-612.

50. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small 2020;16:e2002931.

51. Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021;276:120838.

52. Ettoumi F, Huang H, Xu Y, et al. Supramolecular assembly of dual crosslinked nanocomposite polysaccharides hydrogel: integration of injectable, self-healing, and pH-responsive platform for sustained delivery of polyphenols. Food Hydrocoll 2024;154:110108.

53. Li W, Wang X, Liu Z, et al. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat Mater 2024;23:131-8.

54. Zhan W, Zhang H, Lyu X, Luo Z, Yu Y, Zou Z. An ultra-tough and super-stretchable ionogel with multi functions towards flexible iontronics. Sci China Mater 2023;66:1539-50.

55. Gong Y, Yu L, Lyu X, et al. A mechanically robust, self-healing, and adhesive biomimetic camouflage ionic conductor for aquatic environments. Adv Funct Mater 2023;33:2305314.

56. Zhang D, Fang Y, Liu L, et al. Boosting thermoelectric performance of thermogalvanic hydrogels by structure engineering induced by liquid nitrogen quenching. Adv Energy Mater 2024;14:2303358.

57. Sang S, Bai C, Wang W, et al. Finger temperature-driven thermogalvainc gel-based smart pen: utilized for identity recognition, stroke analysis, and grip posture assessment. Nano Energy 2024;123:109366.

58. Cheng H, Le Q, Liu Z, Qian Q, Zhao Y, Ouyang J. Ionic thermoelectrics: principles, materials and applications. J Mater Chem C 2022;10:433-50.

59. Yu M, Li H, Li Y, et al. Ionic thermoelectric gels and devices: progress, opportunities, and challenges. EnergyChem 2024;6:100123.

60. Qian X, Ma Z, Huang Q, Jiang H, Yang R. Thermodynamics of ionic thermoelectrics for low-grade heat harvesting. ACS Energy Lett 2024;9:679-706.

61. Li Z, Jiang J, He X, Wang C, Niu Y. Recent progress on the thermoelectric effect for electrochemistry. J Mater Chem A 2024;12:13623-46.

62. Liu Y, Cui M, Ling W, et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy Environ Sci 2022;15:3670-87.

63. Liu L, Zhang D, Bai P, et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance. Adv Mater 2023;35:e2300696.

64. Wei S, Ma J, Wu D, et al. Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv Funct Mater 2023;33:2209806.

65. Wang Y, Zhang Y, Xin X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science 2023;381:291-6.

66. Liu Y, Zhang Q, Odunmbaku GO, et al. Solvent effect on the Seebeck coefficient of Fe2+/Fe3+ hydrogel thermogalvanic cells†. J Mater Chem A 2022;10:19690-8.

67. Jia B, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024;384:81-6.

68. Liu H, Shi X, Pan L, et al. Rational triple optimizations boost near-room-temperature thermoelectric performance of BiSe. Acta Mater 2024;280:120343.

69. Liu Y, Jiang Q, Zhang J, et al. Green synthesis of air-stable tellurium nanowires via biomolecule-assisted hydrothermal for thermoelectrics†. Mater Adv 2020;1:1125-33.

70. Buckingham MA, Zhang S, Liu Y, Chen J, Marken F, Aldous L. Thermogalvanic and thermocapacitive behavior of superabsorbent hydrogels for combined low-temperature thermal energy conversion and harvesting. ACS Appl Energy Mater 2021;4:11204-14.

71. Yang X, Zhang Z, Khan SA, et al. Thermogalvanic organohydrogel-based non-contact self-powered electronics for advancing smart agriculture. J Mater Chem C 2024;12:3298-305.

72. Zhou H, Yamada T, Kimizuka N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J Am Chem Soc 2016;138:10502-7.

73. Liu Y, Yin L, Chen S, et al. A hydrogel thermoelectrochemical cell with high self-healability and enhanced thermopower both induced by zwitterions. J Mater Chem A 2024;12:18582-92.

74. Hsu C, Lin Y, Hong S, et al. 3D printed gelatin methacrylate hydrogel-based wearable thermoelectric generators. Adv Sustain Syst 2024;8:2400039.

75. Xu T, Tao Y, Qian Y, et al. Semi-solid thermo-electrochemical cell based wearable power generator for body heat harvesting. Adv Funct Mater 2024;34:2316068.

76. Jia Y, Zhang S, Li J, et al. Coordination enhanced high-seebeck coefficient n-type gel-based thermocells for low-grade energy harvesting and n-p type connected devices. J Power Sources 2024;602:234400.

77. Shen X, Wu J, Hua Z, Liu G. p-n conversion of thermogalvanic cells by harnessing the micellization of thermoresponsive diblock copolymers. ACS Appl Energy Mater 2023;6:10147-54.

78. Peng P, Zhou J, Liang L, et al. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano Micro Lett 2022;14:81.

79. Kim T, Lee JS, Lee G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy 2017;31:160-7.

80. DiSalvo FJ. Thermoelectric cooling and power generation. Science 1999;285:703-6.

81. Han C, Zhu Y, Yang L, et al. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gel thermocells. Energy Environ Sci 2024;17:1559-69.

82. Zhu Y, Han C, Chen J, et al. Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat. Energy Environ Sci 2024;17:4104-14.

83. Kong S, Huang Z, Hu Y, et al. Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for low-grade heat energy harvesting. Nano Energy 2023;115:108708.

84. Liu Y, Chen X, Dong X, Liu A, Ouyang K, Huang Y. Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic cells. Sci Adv 2024;10:eadp4533.

85. Chen J, Shi C, Wu L, et al. Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting. ACS Appl Mater Interfaces 2022;14:34714-21.

86. Chen B, Chen Q, Xiao S, Feng J, Zhang X, Wang T. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci Adv 2021;7:eabi7233.

87. Li N, Liu W, Zheng X, et al. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res 2023;16:11139-48.

88. Wang L, Chen P, Pan Y, et al. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-heart surgery adhesion reduction. Sci Adv 2023;9:eadh1753.

89. Li X, Xiao X, Bai C, et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J Mater Chem C 2022;10:13789-96.

90. Quickenden TI, Mua Y. A review of power generation in aqueous thermogalvanic cells. J Electrochem Soc 1995;142:3985-94.

91. Hu R, Xu D, Luo X. Liquid thermocells enable low-grade heat harvesting. Matter 2020;3:1400-2.

92. Yang P, Liu K, Chen Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew Chem Int Ed Engl 2016;55:12050-3.

93. Jin L, Greene GW, Macfarlane DR, Pringle JM. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Lett 2016;1:654-8.

94. Yu B, Duan J, Li J, et al. All-day thermogalvanic cells for environmental thermal energy harvesting. Research 2019;2019:2460953.

95. Meng FL, Gao M, Ding T, Yilmaz G, Ong WL, Ho GW. Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 2020;30:2002867.

96. Schönig M, Schuster R. Sensitive and fast measurement of surface temperature with a thermogalvanic cell. Appl Phys Lett 2020;116:091601.

97. Inoue D, Niwa H, Nitani H, Moritomo Y. Scaling relation between electrochemical seebeck coefficient for Fe2+/Fe3+ in organic solvent and its viscosity. J Phys Soc Jpn 2021;90:033602.

98. Fang R, Li X, Khan S A et al. Anhydrous thermogalvanic Gel for simultaneous waste heat recovery and thermal management of electronics. ACS Appl Polym Mater 2023;5:4628-35.

99. Jiao N, Abraham TJ, Macfarlane DR, Pringle JM. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple. J Electrochem Soc 2014;161:D3061-5.

100. Lazar MA, Al-Masri D, MacFarlane DR, Pringle JM. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures. Phys Chem Chem Phys 2016;18:1404-10.

101. He J, Al-Masri D, MacFarlane DR, Pringle JM. Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting. Faraday Discuss 2016;190:205-18.

102. Li J, Chen S, Han Z, et al. High performance bacterial cellulose organogel-based thermoelectrochemical cells by organic solvent-driven crystallization for body heat harvest and self-powered wearable strain sensors. Adv Funct Mater 2023;33:2306509.

103. Liang Y, Ka-ho Hui J, Morikawa M, Inoue H, Yamada T, Kimizuka N. High positive seebeck coefficient of aqueous i-/i3- thermocells based on host-guest interactions and LCST behavior of PEGylated α-Cyclodextrin. ACS Appl Energy Mater 2021;4:5326-31.

104. Artyukhov D, Kiselev N, Gorshkov N, et al. Harvesting waste thermal energy using a surface-modified carbon fiber-based thermo-electrochemical cell. Sustainability 2021;13:1377.

105. Kang TJ, Fang S, Kozlov ME, et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv Funct Mater 2012;22:477-89.

106. Abraham TJ, Tachikawa N, MacFarlane DR, Pringle JM. Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials. Phys Chem Chem Phys 2014;16:2527-32.

107. Laux E, Uhl S, Journot T, Brossard J, Jeandupeux L, Keppner H. Aspects of protonic ionic liquid as electrolyte in thermoelectric generators. J Electron Mater 2016;45:3383-9.

108. Im H, Kim T, Song H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat Commun 2016;7:10600.

109. Tian C, Bai C, Wang T, et al. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions. Nano Energy 2023;106:108077.

110. Li J, Wang Z, Khan SA, Li N, Huang Z, Zhang H. Self-powered information conversion based on thermogalvanic hydrogel with interpenetrating networks for nursing aphasic patients. Nano Energy 2023;113:108612.

111. Li J, Xu T, Ma Z, et al. Self-healable and stretchable PAAc/XG/Bi2Se0.3Te2.7 hybrid hydrogel thermoelectric materials. Energy Environ Mater 2024;7:e12547.

112. Fu M, Wu Z, Liu X, Yuan Y, Lai X, Yue K. Highly stretchable ionic hydrogels with enhanced thermoelectric performance and flame retardancy for intelligent fire protection. J Mater Chem A 2024;12:27588-97.

113. Hu Q, Li H, Chen X, et al. Strong tough ionic organohydrogels with negative‐thermopower via the synergy of coordination interaction and hofmeister effect. Adv Funct Mater 2024;34:2406968.

114. Lyu X, Lin Z, Huang C, et al. Tough and elastic hydrogel thermocells for heat energy utilization. Chem Eng J 2024;493:152887.

115. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: From materials to applications. Mater Today 2021;46:62-108.

116. Yang M, Hu Y, Wang X, et al. Chaotropic effect-boosted thermogalvanic ionogel thermocells for all-weather power generation. Adv Mater 2024;36:e2312249.

117. Ma X, Wang W, Cui X, et al. Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for intelligent security. Small 2024;20:e2402700.

118. Lu X, Mo Z, Liu Z, et al. Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew Chem Int Ed Engl 2024;63:e202405357.

119. Zhao J, Wu X, Yu H, et al. Regenerable aerogel‐based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat 2023;5:e12302.

120. Liang L, Lv H, Shi XL, et al. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater Horiz 2021;8:2750-60.

121. Han Y, Wei H, Du Y, et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv Sci 2023;10:e2302685.

122. Fu M, Sun Z, Liu X, et al. Highly stretchable, resilient, adhesive, and self‐healing ionic hydrogels for thermoelectric application. Adv Funct Mater 2023;33:2306086.

123. Wang Z, Xue R, Zhang H, et al. A hydrogel electrolyte toward a flexible zinc-ion battery and multifunctional health monitoring electronics. ACS Nano 2024;18:7596-609.

124. Wu G, Xue Y, Wang L, Wang X, Chen G. Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites†. J Mater Chem A 2018;6:3376-80.

125. Zhao Q, Liu J, Wu Z, et al. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem Eng J 2022;442:136284.

126. Xu X, Liu Q, Qiu J, et al. Photothermal-photocatalytic bifunctional highly porous hydrogel for efficient coherent sewage purification-clean water generation. Desalination 2025;597:118364.

127. Pu S, Liao Y, Chen K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett 2020;20:3791-7.

128. Fu X, Zhuang Z, Zhao Y, et al. Stretchable and self-powered temperature-pressure dual sensing ionic skins based on thermogalvanic hydrogels. ACS Appl Mater Interfaces 2022;14:44792-8.

129. Tian Y, Yang X, Li K, et al. High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric devices. Mater Today Energy 2023;36:101342.

130. Sun W, Zhang P, Lin X, et al. Heat source recognition sensor mimicking the thermosensation function of human skin. The Innovation 2024;5:100673.

131. Wang Z, Li N, Yang X, Zhang Z, Zhang H, Cui X. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing. Microsyst Nanoeng 2024;10:55.

132. Wu X, Gao N, Zheng X, et al. Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl Mater Interfaces 2020;12:27691-9.

133. Zhang Y, Wang H, Ahmed Khan S, et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring. J Colloid Interface Sci 2025;678:143-9.

134. Chen L, Lou J, Rong X, et al. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Carbohydr Polym 2023;321:121310.

135. Tian C, Khan SA, Zhang Z, Cui X, Zhang H. Thermoelectric hydrogel electronic skin for passive multimodal physiological perception. ACS Sens 2024;9:840-8.

136. Yang H, Ahmed Khan S, Li N, Fang R, Huang Z, Zhang H. Thermogalvanic gel patch for self-powered human motion recognition enabled by photo-thermal-electric conversion. Chem Eng J 2023;473:145247.

137. Zhang Y, Li S, Zhang J, et al. Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy. Natl Sci Rev 2024;11:nwae036.

138. Qi Y, Zhang J, Kong Y, et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat Commun 2022;13:484.

139. Qi Y, Zhao Y, Gao Y, et al. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018;2:2393-402.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/