REFERENCES
1. Chan, V.; Asada, H. H.; Bashir, R. Utilization and control of bioactuators across multiple length scales. Lab. Chip. 2014, 14, 653-70.
2. Semini, C.; Tsagarakis, N. G.; Guglielmino, E.; Focchi, M.; Cannella, F.; Caldwell, D. G. Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proc. Inst. Mech. Eng. Part. I. J. Syst. Control. Eng. 2011, 225, 831-49.
3. Hutter, M.; Gehring, C.; Lauber, A.; et al. ANYmal - toward legged robots for harsh environments. Adv. Robot. 2017, 31, 918-31.
4. Kimura, H.; Akiyama, S.; Sakurama, K. Realization of dynamic walking and running of the quadruped using neural oscillator. Auton. Robot. 1999, 7, 247-58.
5. Biswal, P.; Mohanty, P. K. Development of quadruped walking robots: a review. Ain. Shams. Eng. J. 2021, 12, 2017-31.
6. Fan, Y.; Pei, Z.; Wang, C.; Li, M.; Tang, Z.; Liu, Q. A review of quadruped robots: structure, control, and autonomous motion. Adv. Intell. Syst. 2024, 6, 2300783.
9. Marquet, F.; Krut, S.; Company, O.; Pierrot, F. ARCHI: a new redundant parallel mechanism - modeling, control and first results. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, USA, October 29, 2001 - November 03, 2001; Publisher: IEEE; pp 183-188.
10. Gravagne, I.A.; Walker, I.D. On the kinematics of remotely-actuated continuum robots. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation 2000 ICRA. Millennium Conference, San Francisco, USA, April 24-28, 2000; Publisher: IEEE; pp 2544-50.
11. Burgner-kahrs, J.; Rucker, D. C.; Choset, H. Continuum robots for medical applications: a survey. IEEE. Trans. Robot. 2015, 31, 1261-80.
12. Pfeifer, R.; Lungarella, M.; Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 2007, 318, 1088-93.
13. Guo, B.; Wang, P.; Zhao, Z.; Duan, S.; Lei, H. Design and experiments of an origami-inspired pneumatic flexible manipulator. Acta. Mech. Solida. Sin. 2023, 36, 254-61.
14. Teoh, Z.E.; Fuller, S.B.; Chirarattananon, P.; Prez-Arancibia, N.O.; Greenberg, J.D.; Wood, R.J. A hovering flapping-wing microrobot with altitude control and passive upright stability. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, October 7-12, 2012; Publisher: IEEE; pp 3209-16.
15. Morrow, J.; Shin, H.S.; Phillips-Grafflin, C. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails. In 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16-21, 2016; Publisher: IEEE; pp 5024-503.
16. Stokes, A. A.; Shepherd, R. F.; Morin, S. A.; Ilievski, F.; Whitesides, G. M. A hybrid combining hard and soft robots. Soft. Robotics. 2014, 1, 70-4.
17. Li, T.; Li, G.; Liang, Y.; et al. Fast-moving soft electronic fish. Sci. Adv. 2017, 3, e1602045.
18. Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 2016, 28, 231-8.
19. Shian, S.; Bertoldi, K.; Clarke, D. R. Dielectric elastomer based “grippers” for soft robotics. Adv. Mater. 2015, 27, 6814-9.
20. Ji, X.; Liu, X.; Cacucciolo, V.; et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451.
21. Yang, S.; Sharma, P. A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials. Appl. Mech. Rev. 2023, 75, 044801.
22. Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021, 33, e2000713.
23. Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv. Mater. 2021, 33, e2003387.
24. Zhang, C.; Chen, G.; Zhang, K.; Jin, B.; Zhao, Q.; Xie, T. Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuation. Adv. Mater. 2024, 36, e2313078.
25. Ni, C.; Chen, D.; Yin, Y.; et al. Shape memory polymer with programmable recovery onset. Nature 2023, 622, 748-53.
26. Wang, C.; Sim, K.; Chen, J.; et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1870087.
27. He, Q.; Wang, Z.; Song, Z.; Cai, S. Bioinspired design of vascular artificial muscle. Adv. Mater. Technol. 2019, 4, 1800244.
28. He, Q.; Wang, Z.; Wang, Y.; Song, Z.; Cai, S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS. Appl. Mater. Interfaces. 2020, 12, 35464-74.
29. He, Q.; Wang, Z.; Wang, Y.; Minori, A.; Tolley, M. T.; Cai, S. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746.
30. Ramezani, A.; Chung, S. J.; Hutchinson, S. A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2017, 2, eaal2505.
31. Karásek, M.; Muijres, F. T.; De, W. C.; Remes, B. D. W.; de, C. G. C. H. E. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 2018, 361, 1089-94.
32. Li, G.; Chen, X.; Zhou, F.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66-71.
33. Yin, C.; Wei, F.; Fu, S.; et al. Visible light-driven jellyfish-like miniature swimming soft robot. ACS. Appl. Mater. Interfaces. 2021, 13, 47147-54.
34. Ren, Z.; Hu, W.; Dong, X.; Sitti, M. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 2019, 10, 2703.
35. Wang, Y.; Wang, Q.; Liu, M.; et al. Insect-scale jumping robots enabled by a dynamic buckling cascade. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2210651120.
36. Chen, R.; Yuan, Z.; Guo, J.; et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 2021, 12, 7028.
37. Di, Y.; Zhang, Y.; Wen, Y.; et al. Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation. IEEE. Robot. Autom. Lett. 2024, 9, 4345-52.
38. Zhang, Z.; Wang, X.; Wang, S.; Meng, D.; Liang, B. Design and modeling of a parallel-pipe-crawling pneumatic soft robot. IEEE. Access. 2019, 7, 134301-17.
39. Sun, Y.; Li, D.; Wu, M.; et al. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsyst. Nanoeng. 2022, 8, 37.
41. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.
42. Pena-Francesch, A.; Jung, H.; Demirel, M. C.; Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 2020, 19, 1230-5.
43. Yang, G. Z.; Bellingham, J.; Dupont, P. E.; et al. The grand challenges of Science Robotics. Sci. Robot. 2018, 3, eaar7650.
44. Raman, R.; Grant, L.; Seo, Y.; et al. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 2017, 6, 1700030.
45. Wang, W.; Duan, W.; Ahmed, S.; Mallouk, T. E.; Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano. Today. 2013, 8, 531-54.
46. Sakar, M. S.; Neal, D.; Boudou, T.; et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab. Chip. 2012, 12, 4976-85.
47. Legant, W. R.; Pathak, A.; Yang, M. T.; Deshpande, V. S.; McMeeking, R. M.; Chen, C. S. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10097-102.
48. Bajaj, P.; Reddy, B. J.; Millet, L.; et al. Patterning the differentiation of C2C12 skeletal myoblasts. Integr. Biol. 2011, 3, 897-909.
49. Leng, Y.; Li, X.; Zheng, F.; et al. Advances in in vitro models of neuromuscular junction: focusing on organ-on-a-chip, organoids, and biohybrid robotics. Adv. Mater. 2023, 35, e2211059.
50. Gao, C.; Shi, Q.; Pan, X.; et al. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell. Rep. 2024, 43, 113892.
51. Aydin, O.; Passaro, A. P.; Elhebeary, M.; et al. Development of 3D neuromuscular bioactuators. APL. Bioeng. 2020, 4, 016107.
52. Shin, M. K.; Bang, J. S.; Lee, J. E.; et al. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration. Int. J. Mol. Sci. 2022, 23, 5108.
53. Raman, R.; Cvetkovic, C.; Bashir, R. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nat. Protoc. 2017, 12, 519-33.
54. Gapinske, L.; Clark, L.; Caro-Rivera, L. M.; Bashir, R. Cryopreservation alters tissue structure and improves differentiation of engineered skeletal muscle. Tissue. Eng. Part. A. 2023, 29, 557-68.
55. Mestre, R.; Fuentes, J.; Lefaix, L.; et al. Improved performance of biohybrid muscle‐based bio‐bots doped with piezoelectric boron nitride nanotubes. Adv. Materials. Technologies. 2023, 8, 2200505.
56. Kaufman, C. D.; Liu, S. C.; Cvetkovic, C.; et al. Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator. APL. Bioeng. 2020, 4, 026104.
57. Xi, J.; Schmidt, J. J.; Montemagno, C. D. Self-assembled microdevices driven by muscle. Nat. Mater. 2005, 4, 180-184.
58. Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science 2007, 317, 1366-70.
59. Chan, V.; Park, K.; Collens, M. B.; Kong, H.; Saif, T. A.; Bashir, R. Development of miniaturized walking biological machines. Sci. Rep. 2012, 2, 857.
60. Kim, J.; Park, J.; Yang, S.; et al. Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab. Chip. 2007, 7, 1504-8.
61. Kim, T. H.; Kwon, C. H.; Lee, C.; et al. Bio-inspired hybrid carbon nanotube muscles. Sci. Rep. 2016, 6, 26687.
62. Sun, L.; Chen, Z.; Bian, F.; Zhao, Y. Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv. Funct. Mater. 2020, 30, 1907820.
63. Zhang, C.; Yang, L.; Wang, W.; et al. Steering muscle-based bio-syncretic robot through bionic optimized biped mechanical design. Soft. Robot. 2024, 11, 484-93.
64. Kim, Y.; Yang, Y.; Zhang, X.; et al. Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Sci. Robot. 2023, 8, eadd1053.
65. Wang, J.; Wang, Y.; Kim, Y.; Yu, T.; Bashir, R. Multi-actuator light-controlled biological robots. APL. Bioeng. 2022, 6, 036103.
66. Kinjo, R.; Morimoto, Y.; Jo, B.; Takeuchi, S. Biohybrid bipedal robot powered by skeletal muscle tissue. Matter 2024, 7, 948-62.
67. Cvetkovic, C.; Raman, R.; Chan, V.; et al. Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 10125-30.
68. Pagan-diaz, G. J.; Zhang, X.; Grant, L.; et al. Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Adv. Funct. Mater. 2018, 28, 1801145.
69. Raman, R.; Cvetkovic, C.; Uzel, S. G.; et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3497-502.
70. Nawroth, J. C.; Lee, H.; Feinberg, A. W.; et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 2012, 30, 792-7.
71. Takemura, R.; Akiyama, Y.; Hoshino, T.; Morishima, K. Chemical switching of jellyfish-shaped micro robot consisting only of cardiomyocyte gel. In 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, June 5-9, 2011; Publisher: IEEE; pp 2442-5.
72. Park, S. J.; Gazzola, M.; Park, K. S.; et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016, 353, 158-62.
73. Lee, K. Y.; Park, S. J.; Matthews, D. G.; et al. An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science 2022, 375, 639-47.
74. Shin, S. R.; Migliori, B.; Miccoli, B.; et al. Electrically driven microengineered bioinspired soft robots. Adv. Mater. 2018, 30, 1704189.
75. Tetsuka, H.; Pirrami, L.; Wang, T.; Demarchi, D.; Shin, S. R. Wirelessly powered 3D printed hierarchical biohybrid robots with multiscale mechanical properties. Adv. Funct. Mater. 2022, 32, 2202674.
76. Xu, B.; Han, X.; Hu, Y.; et al. A remotely controlled transformable soft robot based on engineered cardiac tissue construct. Small 2019, 15, e1900006.
77. Aydin, O.; Zhang, X.; Nuethong, S.; et al. Neuromuscular actuation of biohybrid motile bots. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 19841-7.
78. Williams, B. J.; Anand, S. V.; Rajagopalan, J.; Saif, M. T. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 2014, 5, 3081.
79. Zhang, C.; Zhang, Y.; Wang, W.; Xi, N.; Liu, L. A manta ray-inspired biosyncretic robot with stable controllability by dynamic electric stimulation. Cyborg. Bionic. Syst. 2022, 2022, 2022/9891380.
80. He, S.; Zhou, Y.; Wu, Y.; Li, Z.; Song, J. A spring-shaped biohybrid swimmer powered by engineered skeletal muscle. Sci. Sin-Phys. Mech. As. 2024, 54, 264509. (in Chinese).
81. Guix, M.; Mestre, R.; Patiño, T.; et al. Biohybrid soft robots with self-stimulating skeletons. Sci. Robot. 2021, 6, eabe7577.
82. Holley, M. T.; Nagarajan, N.; Danielson, C.; Zorlutuna, P.; Park, K. Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab. Chip. 2016, 16, 3473-84.
83. Shin, S. R.; Jung, S. M.; Zalabany, M.; et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS. Nano. 2013, 7, 2369-80.
84. Yalikun, Y.; Uesugi, K.; Hiroki, M.; et al. Insect muscular tissue-powered swimming robot. Actuators 2019, 8, 30.
85. Tanaka, Y.; Morishima, K.; Shimizu, T.; et al. An actuated pump on-chip powered by cultured cardiomyocytes. Lab. Chip. 2006, 6, 362-8.
86. Tanaka, Y.; Sato, K.; Shimizu, T.; Yamato, M.; Okano, T.; Kitamori, T. A micro-spherical heart pump powered by cultured cardiomyocytes. Lab. Chip. 2007, 7, 207-12.
87. Park, J.; Kim, I. C.; Baek, J.; et al. Micro pumping with cardiomyocyte-polymer hybrid. Lab. Chip. 2007, 7, 1367-70.
88. Li, Z.; Seo, Y.; Aydin, O.; et al. Biohybrid valveless pump-bot powered by engineered skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 1543-8.
89. Li, Z.; Balance, W. C.; Joy, M. S. H.; et al. Adaptive biohybrid pumping machine with flow loop feedback. Biofabrication 2022, 14, 025009.
90. Li, Z.; Saif, M. T. A. Mechanics of biohybrid valveless pump-bot. Journal. of. Applied. Mechanics. 2021, 88, 111004.
91. Hasebe, A.; Suematsu, Y.; Takeoka, S.; et al. Biohybrid actuators based on skeletal muscle-powered microgrooved ultrathin films consisting of poly(styrene-block-butadiene-block-styrene). ACS. Biomater. Sci. Eng. 2019, 5, 5734-43.
92. Liu, X.; Zhao, H.; Lu, Y.; et al. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers. Nanoscale 2016, 8, 7278-86.
93. Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.
94. Akiyama, Y.; Sakuma, T.; Funakoshi, K.; Hoshino, T.; Iwabuchi, K.; Morishima, K. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab. Chip. 2013, 13, 4870-80.
95. Kabumoto, K.; Hoshino, T.; Morishima, K. Bio-robotics using interaction between neuron and muscle for development of living prosthesis. In Proceedings of the 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, September 26-29, 2010; Publisher: IEEE; pp 419-24.
96. Morimoto, Y.; Onoe, H.; Takeuchi, S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci. Robot. 2018, 3, eaat4440.
97. Morimoto, Y.; Onoe, H.; Takeuchi, S. Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air. APL. Bioeng. 2020, 4, 026101.