REFERENCES

1. Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli-responsive hydrogels: fabrication and biomedical applications. VIEW 2022;3:20200112.

2. Gholamali I. Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Eng Transl Med 2021;7:91-114.

3. Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, Shakoori Z. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem 2018;8:42-55.

4. Cheng F, Chen H, Li H. Recent progress on hydrogel actuators. J Mater Chem B 2021;9:1762-80.

5. Shi Q, Liu H, Tang D, Li Y, Li X, Xu F. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Mater 2019;11:64.

6. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science 2017;356:eaaf3627.

7. Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: a review. Carbohydr Polym 2021;251:116871.

8. Penn MJ, Hennessy MG. Optimal loading of hydrogel-based drug-delivery systems. Appl Math Model 2022;112:649-68.

9. Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive “smart” interpenetrating polymer network hydrogels. Mater Today Bio 2024;25:100998.

10. Yu Y, Xu S, Yu S, et al. A hybrid genipin-cross-linked hydrogel/nanostructured lipid carrier for ocular drug delivery: cellular, ex vivo, and in vivo evaluation. ACS Biomater Sci Eng 2020;6:1543-52.

11. Aminu N, Chan SY, Yam MF, Toh SM. A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis. Int J Pharm 2019;570:118659.

12. Sharma PK, Singh Y. Glyoxylic hydrazone linkage-based PEG hydrogels for covalent entrapment and controlled delivery of doxorubicin. Biomacromolecules 2019;20:2174-84.

13. Abbasi M, Sohail M, Minhas MU, et al. Novel biodegradable pH-sensitive hydrogels: an efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol 2019;136:83-96.

14. Jia Y, Zhang X, Yang W, et al. A pH-responsive hyaluronic acid hydrogel for regulating the inflammation and remodeling of the ECM in diabetic wounds. J Mater Chem B 2022;10:2875-88.

15. Shi H, Wang Y, Bao Z, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm 2019;570:118688.

16. Peng C, Wang G, Wang Y, et al. Thermosensitive acetylated carboxymethyl chitosan gel depot systems sustained release caffeic acid phenethyl ester for periodontitis treatment. Polym Advan Technol 2023;34:155-65.

17. Chung CK, García-Couce J, Campos Y, et al. Doxorubicin loaded poloxamer thermosensitive hydrogels: chemical, pharmacological and biological evaluation. Molecules 2020;25:2219.

18. Jiang Y, Zhang X, Zhang W, et al. Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 2022;16:8662-76.

19. Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater 2018;72:55-69.

20. Lei H, Fan D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem Eng J 2021;421:129578.

21. Liu J, Liu H, Jia Y, et al. Glucose-sensitive delivery of tannic acid by a photo-crosslinked chitosan hydrogel film for antibacterial and anti-inflammatory therapy. J Biomater Sci Polym Ed 2022;33:1644-63.

22. Yang J, Zeng WN, Xu P, et al. Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater 2022;140:206-18.

23. Yin R, He J, Bai M, et al. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery. Mater Sci Eng C Mater Biol Appl 2019;96:374-82.

24. Guo J, Sun H, Lei W, et al. MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery. J Dent Res 2019;98:564-71.

25. Li W, Tao C, Wang J, Le Y, Zhang J. MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Adv 2019;9:31264-73.

26. Pandey M, Choudhury H, D/O Segar Singh SK, et al. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: fabrication, characterization and in vitro release kinetics. Molecules 2021;26:2704.

27. Liu Y, Li T, Sun M, et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 2022;146:37-48.

28. Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 2019;10:4699-706.

29. Yan X, Sun T, Song Y, et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary therapy of hepatocellular carcinoma. Nano Lett 2022;22:2251-60.

30. Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C Mater Biol Appl 2021;124:112042.

31. Zhao X, Yang Y, Yu J, et al. Injectable hydrogels with high drug loading through B-N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials 2022;282:121387.

32. Huang L, Wang J, Kong L, et al. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. Int J Biol Macromol 2022;222:1476-86.

33. Wu Y, Wang Y, Long L, Hu C, Kong Q, Wang Y. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J Control Release 2022;341:147-65.

34. Yan L, Gao S, Shui S, et al. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. Int J Biol Macromol 2020;162:1303-10.

35. Jahanbekam S, Mozafari N, Bagheri-Alamooti A, et al. Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis. Int J Biol Macromol 2023;240:124449.

36. Comunian T, Babazadeh A, Rehman A, et al. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Scie Nutr 2022;62:3301-22.

37. Lee BP, Konst S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 2014;26:3415-9.

38. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res 2015;6:105-21.

39. Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv Funct Mater 2021;31:2005941.

40. Chen L, Liu F, Abdiryim T, Liu X. Stimuli-responsive hydrogels as promising platforms for soft actuators. Mater Today Phys 2024;40:101281.

41. Chen L, Zhang K, Ahn J, et al. Morph-genetic bamboo-reinforced hydrogel complex for bio-mimetic actuator. Chem Eng J 2023;463:142391.

42. Yang Z, Chen L, Mcclements DJ, et al. Stimulus-responsive hydrogels in food science: a review. Food Hydrocolloid 2022;124:107218.

43. Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 2015;97:338-49.

44. Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz 2017;4:694-700.

45. Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008;68:34-45.

46. Zhang S, Ge G, Qin Y, et al. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2023;18:100508.

47. Bansal M, Dravid A, Aqrawe Z, Montgomery J, Wu Z, Svirskis D. Conducting polymer hydrogels for electrically responsive drug delivery. J Control Release 2020;328:192-209.

48. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013;36:587-97.

49. Roy A, Manna K, Pal S. Recent advances in various stimuli-responsive hydrogels: from synthetic designs to emerging healthcare applications. Mater Chem Front 2022;6:2338-85.

50. Kim BS, Kim SH, Kim K, et al. Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration. Mater Today Bio 2020;8:100079.

51. Zhu S, Nih L, Carmichael ST, Lu Y, Segura T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv Mater 2015;27:3620-5.

52. Peng X, Wang H. Shape changing hydrogels and their applications as soft actuators. J Polym Sci B Polym Phys 2018;56:1314-24.

53. Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int J Biol Macromol 2023;235:123902.

54. Chang S, Weng Z, Zhang C, Jiang S, Duan G. Cellulose-based intelligent responsive materials: a review. Polymers 2023;15:3905.

55. Breger JC, Yoon C, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 2015;7:3398-405.

56. Singh R, Datta B. Advances in biomedical and environmental applications of magnetic hydrogels. ACS Appl Polym Mater 2023;5:5474-94.

57. Tang Y, Li M, Wang T, Dong X, Hu W, Sitti M. Wireless miniature magnetic phase-change soft actuators. Adv Mater 2022;34:e2204185.

58. Li W, Guan Q, Li M, Saiz E, Hou X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog Polym Sci 2023;140:101665.

59. Zhang H, Limphong P, Pieper J, et al. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 2012;26:1442-51.

60. Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Re 2021;11:1323-39.

61. Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci U S A 2014;111:9762-7.

62. Chen F, Zhou D, Wang J, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed Engl 2018;57:6568-71.

63. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Tar 2021;6:426.

64. Nie G, Hong K, Zhang E, et al. Fabrication of a porous chitosan/poly-(γ-glutamic acid) hydrogel with a high absorption capacity by electrostatic contacts. Int J Biol Macromol 2020;159:986-94.

65. Feng W, Wang Z. Tailoring the swelling-shrinkable behavior of hydrogels for biomedical applications. Adv Sci 2023;10:e2303326.

66. Vermonden T, Klumperman B. The past, present and future of hydrogels. Eur Polym J 2015;72:341-3.

67. Widiyanti P, Priskawati YCA. Synthesis and characterization of hydrogel-based hyaluronic acid-chitosan-allium sativum extract for intraperitoneal antiadhesion application. Int J Biomater 2023;2023:5172391.

68. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67.

69. Lyu X, Hu Y, Shi S, et al. Hydrogel bioelectronics for health monitoring. Biosensors 2023;13:815.

70. Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng 2021;5:737-48.

71. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

72. Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl Mater Interfaces 2018;10:20845-53.

73. Li J, Liu Y, Yuan L, et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 2022;606:94-101.

74. Lu Y, Yang G, Wang S, et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 2024;7:51-65.

75. Zhu Y, Haghniaz R, Hartel MC, et al. Recent advances in bioinspired hydrogels: materials, devices, and biosignal computing. ACS Biomater Sci Eng 2023;9:2048-69.

76. Jiang L, Lu X. Functional hydrogel-based supercapacitors for wearable bioelectronic devices. Mater Chem Front 2021;5:7479-98.

77. Wang W, Yao D, Wang H, et al. A Breathable, Stretchable, and Self-Calibrated Multimodal Electronic Skin Based on Hydrogel Microstructures for Wireless Wearables. Adv Funct Materials 2024;34:2316339.

78. Luo L, Wu Z, Ding Q, et al. In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano 2024;18:15754-68.

79. Lei Z, Wu P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat Commun 2018;9:1134.

80. Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022;12:8691-707.

81. Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024;310:122632.

82. Huang W, Ying R, Wang W, et al. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv Funct Mater 2020;30:2000644.

83. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021;15:12687-722.

84. Zhao Y, Li Z, Li Q, et al. Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol Rapid Commun 2020;41:e2000441.

85. Wang K, Zhang J, Li H, et al. Smart hydrogel sensors for health monitoring and early warning. Adv Sensor Res 2024;3:2400003.

86. McLister A, McHugh J, Cundell J, Davis J. New developments in smart bandage technologies for wound diagnostics. Adv Mater 2016;28:5732-7.

87. Ma J, Zhong J, Sun F, et al. Hydrogel sensors for biomedical electronics. Chem Eng J 2024;481:148317.

88. Ouyang J, Zhang Z, Deng B, et al. Oral drug delivery platforms for biomedical applications. Mater Today 2023;62:296-326.

89. Han Z, Wang P, Mao G, et al. Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 2020;12:12010-7.

90. Issarachot O, Bunlung S, Kaewkroek K, Wiwattanapatapee R. Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol. Saudi Pharm J 2023;31:335-47.

91. Ahsan A, Farooq MA, Parveen A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega 2020;5:20450-60.

92. Li Y, Yang HY, Lee DS. Advances in biodegradable and injectable hydrogels for biomedical applications. J Control Release 2021;330:151-60.

93. Blacklow SO, Li J, Freedman BR, Zeidi M, Chen C, Mooney DJ. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci 2019;5:eaaw3963.

94. Yang N, Zhu M, Xu G, Liu N, Yu C. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion. J Mater Chem B 2020;8:3908-17.

95. Wang T, Zheng Y, Shi Y, Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv Transl Re 2019;9:227-39.

96. Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 2022;16:3194-207.

97. Bellotti E, Fedorchak MV, Velankar S, Little SR. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J Mater Chem B 2019;7:1276-83.

98. Iohara D, Okubo M, Anraku M, et al. Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery. Mol Pharm 2017;14:2740-8.

99. Xu X, Gu Z, Chen X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019;86:235-46.

100. Jiang H, Fu X, Zhao G, et al. Intradermal injection of a thermoresponsive polymeric dexamethasone prodrug (ProGel-Dex) ameliorate dermatitis in an imiquimod (IMQ)-induced psoriasis-like mouse model. Mol Pharm 2024;21:4995-5004.

101. Noddeland HK, Lind M, Jensen LB, et al. Design and characterization of matrix metalloproteinase-responsive hydrogels for the treatment of inflammatory skin diseases. Acta Biomater 2023;157:149-61.

102. Hu L, Zhang P, Wang X, Cheng X, Qin J, Tang R. pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications. Carbohydr Polym 2017;178:166-79.

103. Gangrade A, Gawali B, Jadi PK, Naidu VGM, Mandal BB. Photo-electro active nanocomposite silk hydrogel for spatiotemporal controlled release of chemotherapeutics: an in vivo approach toward suppressing solid tumor growth. ACS Appl Mater Interfaces 2020;12:27905-16.

104. Lee J, Ko JH, Mansfield KM, Nauka PC, Bat E, Maynard HD. Glucose-responsive trehalose hydrogel for insulin stabilization and delivery. Macromol Biosci 2018;18:e1700372.

105. Ye T, Yan S, Hu Y, Ding L, Wu W. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym Chem 2014;5:186-94.

106. Huai M, Pei M, Pan J, et al. Oral colon-targeted responsive alginate/hyaluronic acid-based hydrogel propels the application of infliximab in colitis. Int J Biol Macromol 2023;249:125952.

107. Wang CY, Sun M, Fan Z, Du JZ. Intestine enzyme-responsive polysaccharide-based hydrogel to open epithelial tight junctions for oral delivery of imatinib against colon cancer. Chinese J Polym Sci 2022;40:1154-64.

108. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 2018;127:130-41.

109. Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 2021;15:7078-93.

110. Zhang W, Liu L, Cheng H, et al. Hydrogel-based dressings designed to facilitate wound healing. Mater Adv 2024;5:1364-94.

111. Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019;112:108615.

112. Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AE. A review on revolutionizing ophthalmic therapy: unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024;273:132700.

113. Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater Sci Eng C Mater Biol Appl 2021;127:112212.

114. Ketabat F, Pundir M, Mohabatpour F, et al. Controlled drug delivery systems for oral cancer treatment - current status and future perspectives. Pharmaceutics 2019;11:302.

115. Zhao Y, Ran B, Xie X, Gu W, Ye X, Liao J. Developments on the smart hydrogel-based drug delivery system for oral tumor therapy. Gels 2022;8:741.

116. Jyothi S, Krishna K, Ameena Shirin V, Sankar R, Pramod K, Gangadharappa H. Drug delivery systems for the treatment of psoriasis: current status and prospects. J Drug Deliv Sci Tec 2021;62:102364.

117. Vasowala T, Gharat S, Mhase M, Momin M. Advances in hydrogels based cutaneous drug delivery system for management of psoriasis. Eur Polym J 2024;202:112630.

118. Zhao J, Gong S, Mu Y, et al. Wearable dual-drug controlled release patch for psoriasis treatment. J Colloid Interface Sci 2024;669:835-43.

119. Marques AC, Costa PJ, Velho S, Amaral MH. Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discov Today 2021;26:2397-405.

120. Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm 2020;17:373-91.

121. Song J, Zhang Y, Chan SY, et al. Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. npj Flex Electron 2021;5:26.

122. Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022;19:219-38.

123. Wang D, Wang W, Wang P, et al. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023;643:123222.

124. Yang Z, Mcclements DJ, Li C, et al. Targeted delivery of hydrogels in human gastrointestinal tract: a review. Food Hydrocolloid 2023;134:108013.

125. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458-62.

126. Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci 2007;8:623-35.

127. Feiner R, Dvir T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Revs Mater 2017;3:17076.

128. Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017;1:862-77.

129. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019;3:58-68.

130. Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol 2021;16:1019-29.

131. Yang M, Chen P, Qu X, et al. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable chronic neuromodulation. ACS Nano 2023;17:885-95.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/