REFERENCES

1. Chouhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem Soc Rev 2020;49:2869-85.

2. Pérez-Fidalgo L, Xu K, Charles BL, et al. Anomalous electron-phonon coupling in cesium-substituted methylammonium lead iodide perovskites. J Phys Chem C 2023;127:22817-26.

3. Spera EL, Pereyra CJ, Gau DL, Berruet M, Marotti RE. Excitonic optical properties of CH3NH3PbI3 perovskite and its dependence with temperature. MRS Adv 2024;9:39-44.

4. Jošt M, Kegelmann L, Korte L, Albrecht S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv Energy Mater 2020;10:1904102.

5. Duan L, Walter D, Chang N, et al. Stability challenges for the commercialization of perovskite-silicon tandem solar cells. Nat Rev Mater 2023;8:261-81.

6. Schuck G, Többens DM, Wallacher D, Grimm N, Tien TS, Schorr S. Temperature-dependent EXAFS measurements of the Pb L3-edge allow quantification of the anharmonicity of the lead-halide bond of chlorine-substituted methylammonium (MA) lead triiodide. J Phys Chem C 2022;126:5388-402.

7. Weadock NJ, Mackeen C, Qin X, et al. Thermal contributions to the local and long-range structural disorder in CH3NH3PbBr3. PRX Energy 2023;2:033004.

8. Schuck G, Lehmann F, Ollivier J, Mutka H, Schorr S. Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI3-xClx perovskites. J Phys Chem C 2019;123:11436-46.

9. Miyata K, Atallah TL, Zhu XY. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci Adv 2017;3:e1701469.

10. Tailor NK, Satapathi S. Crystalline-liquid duality of specific heat in halide perovskite semiconductor. Scr Mater 2023;223:115061.

11. Adams DJ, Churakov SV. Classification of perovskite structural types with dynamical octahedral tilting. IUCrJ 2023;10:309-20.

12. Liang X, Klarbring J, Baldwin WJ, Li Z, Csányi G, Walsh A. Structural dynamics descriptors for metal halide perovskites. J Phys Chem C Nanomater Interfaces 2023;127:19141-51.

13. Weadock NJ, Sterling TC, Vigil JA, et al. The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule 2023;7:1051-66.

14. Beecher AN, Semonin OE, Skelton JM, et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett 2016;1:880-7.

15. Page K, Siewenie JE, Quadrelli P, Malavasi L. Short-range order of methylammonium and persistence of distortion at the local scale in MAPbBr3 hybrid perovskite. Angew Chem Int Ed 2016;55:14320-4.

16. Bernasconi A, Malavasi L. Direct evidence of permanent octahedra distortion in MAPbBr3 hybrid perovskite. ACS Energy Lett 2017;2:863-8.

17. Bird TA, Chen J, Songvilay M, et al. Large dynamic scissoring mode displacements coupled to band gap opening in hybrid perovskites. arXiv 2021. Available from: https://arxiv.org/abs/2108.05751 [Last accessed on 7 Aug 2024].

18. Simenas M, Gagor A, Banys J, Maczka M. Phase transitions and dynamics in mixed three- and low-dimensional lead halide perovskites. Chem Rev 2024;124:2281-326.

19. Kutes Y, Ye L, Zhou Y, Pang S, Huey BD, Padture NP. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J Phys Chem Lett 2014;5:3335-9.

20. Bari M, Bokov AA, Ye Z. Ferroelastic domains and phase transitions in organic-inorganic hybrid perovskite CH3NH3PbBr3. J Mater Chem C 2021;9:3096-107.

21. Bari M, Bokov AA, Leach GW, Ye Z. Ferroelastic domains and effects of spontaneous strain in lead halide perovskite CsPbBr3. Chem Mater 2023;35:6659-70.

22. Wilson JN, Frost JM, Wallace SK, Walsh A. Dielectric and ferroic properties of metal halide perovskites. APL Mater 2019;7:010901.

23. Breternitz J. The “ferros” of MAPbI3: ferroelectricity, ferroelasticity and its crystallographic foundations in hybrid halide perovskites. Cryst Mater 2022;237:135-40.

24. Ambrosio F, De Angelis F, Goñi AR. The ferroelectric-ferroelastic debate about metal halide perovskites. J Phys Chem Lett 2022;13:7731-40.

25. Zheng W, Wang X, Zhang X, et al. Emerging halide perovskite ferroelectrics. Adv Mater 2023;35:e2205410.

26. Haeger T, Heiderhoff R, Riedl T. Thermal properties of metal-halide perovskites. J Mater Chem C 2020;8:14289-311.

27. Jacobsson TJ, Schwan LJ, Ottosson M, Hagfeldt A, Edvinsson T. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg Chem 2015;54:10678-85.

28. Bozec Y, Kaang S, Hine P, Ward I. The thermal-expansion behaviour of hot-compacted polypropylene and polyethylene composites. Composit Sci Technol 2000;60:333-44.

29. Becker P, Scyfried P, Siegert H. The lattice parameter of highly pure silicon single crystals. Z Physik B Condens Matter 1982;48:17-21.

30. Ge C, Hu M, Wu P, et al. Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic-inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I). J Phys Chem C 2018;122:15973-8.

31. Zhou Y, Guo Z, Qaid SMH, Xu Z, Zhou Y, Zang Z. Strain engineering toward high-performance formamidinium-based perovskite solar cells. Solar RRL 2023;7:2300438.

32. Katan C, Mohite AD, Even J. Entropy in halide perovskites. Nat Mater 2018;17:377-9.

33. Fornasini P, Grisenti R. On EXAFS debye-waller factor and recent advances. J Synchrotron Rad 2015;22:1242-57.

34. Sanson A. EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics. Microstructures 2021;1:2021004.

35. Schuck G, Többens DM, Koch-müller M, Efthimiopoulos I, Schorr S. Infrared spectroscopic study of vibrational modes across the orthorhombic-tetragonal phase transition in methylammonium lead halide single crystals. J Phys Chem C 2018;122:5227-37.

36. Whitfield PS, Herron N, Guise WE, et al. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep 2016;6:35685.

37. Franz A, Többens DM, Schorr S. Interaction between cation orientation, octahedra tilting and hydrogen bonding in methylammonium lead triiodide. Cryst Res Technol 2016;51:534-40.

38. Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 2013;52:9019-38.

39. Celeste A, Capitani F. Hybrid perovskites under pressure: present and future directions. J Appl Phys 2022;132:220903.

40. Szafrański M, Katrusiak A. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J Phys Chem Lett 2016;7:3458-66.

41. Gil-González E, Pérez-Maqueda LA, Sánchez-Jiménez PE, Perejón A. Paving the way to establish protocols: modeling and predicting mechanochemical reactions. J Phys Chem Lett 2021;12:5540-6.

42. Whitfield PS, Herron N, Guise WE, et al. Correction: Corrigendum: structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep 2017;7:42831.

43. Schorr S, Sheptyakov D. Low-temperature thermal expansion in sphalerite-type and chalcopyrite-type multinary semiconductors. J Phys Condens Matter 2008;20:104245.

44. Haussühl S. Kristallphysik; Weinheim, Germany: Physic-Verlag; 1983.

45. Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater 2014;2:081801.

46. Campbell BJ, Stokes HT, Tanner DE, Hatch DM. ISODISPLACE: a web-based tool for exploring structural distortions. J Appl Cryst 2006;39:607-14.

47. Liu J, Du J, Phillips AE, Wyatt PB, Keen DA, Dove MT. Neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide. J Phys Condens Matter 2022;34:145401.

48. Egami T, Billinge SJL. Underneath the bragg peaks: structural analysis of complex materials; Oxford: Elsevier; 2003.

49. Billinge SJ. Nanoscale structural order from the atomic pair distribution function (PDF): there’s plenty of room in the middle. J Solid State Chem 2008;181:1695-700.

50. Bird TA, Herlihy A, Senn MS. Symmetry-adapted pair distribution function analysis (SAPA): a novel approach to evaluating lattice dynamics and local distortions from total scattering data. J Appl Cryst 2021;54:1514-20.

51. Bird TA, Woodland-Scott J, Hu L, et al. Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6. Phys Rev B 2020;101:064306.

52. Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 2005;12:537-41.

53. Bunker G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instrum Methods Phys Res 1983;207:437-44.

54. Bunker G. Introduction to EXAFS; Cambridge: Cambridge University Press; 2010.

55. Fornasini P, a Beccara S, Dalba G, et al. Extended X-ray-absorption fine-structure measurements of copper: local dynamics, anharmonicity, and thermal expansion. Phys Rev B 2004;70:174301.

56. Fornasini P, Grisenti R. The coefficient of bond thermal expansion measured by extended X-ray absorption fine structure. J Chem Phys 2014;141:164503.

57. Fornasini P. Vibrational anisotropy. In: Schnohr CS, Ridgway MC, editors. X-ray absorption spectroscopy of semiconductors. Berlin: Springer; 2015. pp. 127-42.

58. Attfield JP. Mechanisms and materials for NTE. Front Chem 2018;6:371.

59. Dove MT, Fang H. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Rep Prog Phys 2016;79:066503.

60. Dalba G, Diop D, Fornasini P, Rocca F. An EXAFS study of thermal disorder in GaAs. J Phys Condens Matter 1994;6:3599-608.

61. Dalba G, Fornasini P, Kuzmin A, Purans J, Rocca F. X-ray absorption spectroscopy study of ReO3 lattice dynamics. J Phys Condens Matter 1995;7:1199-213.

62. Talit K, Strubbe DA. Stress effects on vibrational spectra of a cubic hybrid perovskite: a probe of local strain. J Phys Chem C 2020;124:27287-99.

63. Gava V, Martinotto AL, Perottoni CA. First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8. Phys Rev Lett 2012;109:195503.

64. Boldyrev KN, Anikeeva VE, Semenova OI, Popova MN. Infrared spectra of the CH3NH3PbI3 hybrid perovskite: signatures of phase transitions and of organic cation dynamics. J Phys Chem C 2020;124:23307-16.

65. Železný V, Kadlec C, Kamba S, Repček D, Kundu S, Saidaminov MI. Infrared and terahertz studies of phase transitions in the CH3NH3PbBr3 perovskite. Phys Rev B 2023;107:174113.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/