REFERENCES

1. Tu J, Song WL, Lei H, et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem Rev 2021;121:4903-61.

2. Yang H, Li H, Li J, et al. The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed 2019;58:11978-96.

3. Das S, Manna SS, Pathak B. Recent trends in electrode and electrolyte design for aluminum batteries. ACS Omega 2021;6:1043-53.

4. Zhang Y, Liu S, Ji Y, Ma J, Yu H. Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv Mater 2018;30:e1706310.

5. Jayaprakash N, Das SK, Archer LA. The rechargeable aluminum-ion battery. Chem Commun 2011;47:12610-2.

6. Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges. Chem Rec 2022;22:e202200181.

7. Li Q, Bjerrum NJ. Aluminum as anode for energy storage and conversion: a review. J Power Sources 2002;110:1-10.

8. Ferdian D, Pratesa Y, Togina I, Adelia I. Development of Al-Zn-Cu alloy for low voltage aluminum sacrificial anode. Procedia Eng 2017;184:418-22.

9. Ran Q, Zeng S, Zhu M, et al. Uniformly MXene-grafted eutectic aluminum-cerium alloys as flexible and reversible anode materials for rechargeable aluminum-ion battery. Adv Funct Mater 2023;33:2211271.

10. Wang M, Zhang F, Lee C, Tang Y. Low-cost metallic anode materials for high performance rechargeable batteries. Adv Energy Mater 2017;7:1700536.

11. Jiang M, Fu C, Meng P, et al. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv Mater 2022;34:e2102026.

12. Mahmood A, Ali Z, Tabassum H, et al. Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries. Front Chem 2020;8:408.

13. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 2012;24:5166-80.

14. Zafar ZA, Imtiaz S, Razaq R, et al. Cathode materials for rechargeable aluminum batteries: current status and progress. J Mater Chem A 2017;5:5646-60.

15. Wang DY, Wei CY, Lin MC, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 2017;8:14283.

16. Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Design strategies of high-performance positive materials for nonaqueous rechargeable aluminum batteries: from crystal control to battery configuration. Small 2022;18:e2201362.

17. Li Q, Mahmood N, Zhu J, Hou Y, Sun S. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014;9:668-83.

18. Mahmood N, Tang T, Hou Y. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 2016;6:1600374.

19. Angell M, Pan CJ, Rong Y, et al. High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc Natl Acad Sci USA 2017;114:834-9.

20. Heise GW, Schumacher EA, Cahoon NC. A heavy duty chlorine-depolarized cell. J Electrochem Soc 1948;94:99.

21. Zaromb S. The use and behavior of aluminum anodes in alkaline primary batteries. J Electrochem Soc 1962;109:1125.

22. Egan D, Ponce de León C, Wood R, Jones R, Stokes K, Walsh F. Developments in electrode materials and electrolytes for aluminium - air batteries. J Power Sources 2013;236:293-310.

23. Gifford PR, Palmisano JB. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J Electrochem Soc 1988;135:650-4.

24. Paranthaman MP, Brown G, Sun XG, Nanda J, Manthiram A, Manivannan A. A transformational, high energy density, secondary aluminum ion battery. Meet Abstr 2010;MA2010-02:314.

25. Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S. A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun 2015;51:11892-5.

26. Sun XG, Bi Z, Liu H, et al. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode. Chem Commun 2016;52:1713-6.

27. Zhang L, Zhang C, Ding Y, Ramirez-meyers K, Yu G. A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents. Joule 2017;1:623-33.

28. Tian H, Zhang S, Meng Z, He W, Han W. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett 2017;2:1170-6.

29. Wang S, Jiao S, Song W, et al. A novel dual-graphite aluminum-ion battery. Energy Stor Mater 2018;12:119-27.

30. Yu Z, Jiao S, Li S, et al. Flexible stable solid-state Al-ion batteries. Adv Funct Mater 2019;29:1806799.

31. Liu Y, Yang L, Xie B, et al. Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery. Chem Eng J 2020;381:122681.

32. Thanwisai P, Chaiyapo N, Phuenhinlad P, et al. Mesoporous and defective activated carbon cathode for AlCl4- anion storage in non-aqueous aluminium-ion batteries. Carbon 2022;191:195-204.

33. Wang L, Zhu G, Lin Y, Wang Y, Zhu Q, Dai Z. MOF-derived hierarchical porous carbon octahedrons for aluminum-ion batteries. Carbon 2023;202:305-13.

34. Elia GA, Marquardt K, Hoeppner K, et al. An overview and future perspectives of aluminum batteries. Adv Mater 2016;28:7564-79.

35. Leisegang T, Meutzner F, Zschornak M, et al. The aluminum-ion battery: a sustainable and seminal concept? Front Chem 2019;7:268.

36. Han X, Bai Y, Zhao R, Li Y, Wu F, Wu C. Electrolytes for rechargeable aluminum batteries. Prog Mater Sci 2022;128:100960.

37. Yu X, Manthiram A. Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv Energy Mater 2017;7:1700561.

38. Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design. J Power Sources 2021;498:229762.

39. Tu J, Wang S, Li S, Wang C, Sun D, Jiao S. The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte. J Electrochem Soc 2017;164:A3292-302.

40. Elia GA, Hasa I, Greco G, et al. Insights into the reversibility of aluminum graphite batteries. J Mater Chem A 2017;5:9682-90.

41. Kravchyk KV, Wang S, Piveteau L, Kovalenko MV. Efficient aluminum chloride-natural graphite battery. Chem Mater 2017;29:4484-92.

42. Abood HM, Abbott AP, Ballantyne AD, Ryder KS. Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+AlCl4- and comparison with imidazolium based systems . Chem Commun ;47:3523-5.

43. Fang Y, Jiang X, Sun XG, Dai S. New ionic liquids based on the complexation of dipropyl sulfide and AlCl3 for electrodeposition of aluminum. Chem Commun 2015;51:13286-9.

44. Hu P, Zhang R, Meng X, Liu H, Xu C, Liu Z. Structural and spectroscopic characterizations of amide-AlCl3-based ionic liquid analogues. Inorg Chem 2016;55:2374-80.

45. Xu H, Bai T, Chen H, et al. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Stor Mater 2019;17:38-45.

46. Liu Z, Wang X, Liu Z, et al. Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries. ACS Appl Mater Interfaces 2021;13:28164-70.

47. Sun XG, Fang Y, Jiang X, Yoshii K, Tsuda T, Dai S. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem Commun 2016;52:292-5.

48. Yu Z, Jiao S, Tu J, et al. Gel electrolytes with a wide potential window for high-rate Al-ion batteries. J Mater Chem A 2019;7:20348-56.

49. Wu F, Yang H, Bai Y, Wu C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv Mater 2019;31:e1806510.

50. Zhu N, Wu F, Wang Z, et al. Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J Energy Chem 2020;51:72-80.

51. Zhang L, Chen L, Luo H, Zhou X, Liu Z. Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv Energy Mater 2017;7:1700034.

52. Wu Y, Gong M, Lin MC, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater 2016;28:9218-22.

53. Geng L, Scheifers JP, Fu C, Zhang J, Fokwa BPT, Guo J. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS Appl Mater Interfaces 2017;9:21251-7.

54. Placke T, Fromm O, Lux SF, et al. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 2012;159:A1755-65.

55. Reed LD, Ortiz SN, Xiong M, Menke EJ. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem Commun 2015;51:14397-400.

56. Wang S, Yu Z, Tu J, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene. Adv Energy Mater 2016;6:1600137.

57. Wang S, Jiao S, Wang J, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 2017;11:469-77.

58. Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 2013;25:4932-7.

59. Yousaf M, Naseer U, Li Y, et al. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ Sci 2021;14:2670-707.

60. Mahmood N, Zhang C, Yin H, Hou Y. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A 2014;2:15-32.

61. Tareen AK, Khan K, Iqbal M, et al. Recent advance in two-dimensional MXenes: new horizons in flexible batteries and supercapacitors technologies. Energy Stor Mater 2022;53:783-826.

62. Tahir M, Cao C, Butt FK, et al. Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. J Mater Chem A 2013;1:13949.

63. Goel P, Dobhal D, Sharma R. Aluminum-air batteries: a viability review. J Energy Stor 2020;28:101287.

64. Mori R. Recent developments for aluminum-air batteries. Electrochem Energy Rev 2020;3:344-69.

65. Gaele MF, Di Palma TM. Rechargeable aluminum-air batteries based on aqueous solid-state electrolytes. Energy Technol 2022;10:2101046.

66. Fan L, Lu H. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J Power Sources 2015;284:409-15.

67. Fan L, Lu H, Leng J, Sun Z, Chen C. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes. J Power Sources 2015;299:66-9.

68. Wu Z, Zhang H, Qin K, et al. The role of gallium and indium in improving the electrochemical characteristics of Al-Mg-Sn-based alloy for Al-air battery anodes in 2 M NaCl solution. J Mater Sci 2020;55:11545-60.

69. Zhuang Z, Feng Y, Peng C, Yang L, Wang M. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries. Trans Nonferr Metal Soc 2021;31:2558-69.

70. Ren J, Fu C, Dong Q, et al. Evaluation of impurities in aluminum anodes for Al-air batteries. ACS Sustain Chem Eng 2021;9:2300-8.

71. Lv C, Li Y, Zhu Y, et al. Quasi-solid-state aluminum-air batteries with ultra-high energy density and uniform aluminum stripping behavior. Adv Sci 2023;10:e2304214.

72. Wang Y, Pan W, Leong KW, Luo S, Zhao X, Leung DY. Solid-state Al-air battery with an ethanol gel electrolyte. Green Energy Environ 2023;8:1117-27.

73. Harchegani RK, Riahi AR. Synergistic effect of vanadate and nanoclay hybrid inhibitor on the self-corrosion and discharge activity of Al anode in alkaline aluminum-air batteries. J Electrochem Soc 2023;170:030524.

74. Srivastava S, Ahuja D, Varshney PK. Impact of surface modification of electrode for aluminium air batteries. J Energy Stor 2024;76:109588.

75. Zuo Y, Yu Y, Liu H, Gu Z, Cao Q, Zuo C. Electrospun Al2O3 film as inhibiting corrosion interlayer of anode for solid aluminum-air batteries. Batteries 2020;6:19.

76. Zuo Y, Yu Y, Shi H, Wang J, Zuo C, Dong X. Inhibition of hydrogen evolution by a bifunctional membrane between anode and electrolyte of aluminum-air battery. Membranes 2022;12:407.

77. Ipadeola AK, Eid K, Abdullah AM. Porous transition metal-based nanostructures as efficient cathodes for aluminium-air batteries. Curr Opin Electrochem 2023;37:101198.

78. Timofeeva EV, Segre CU, Pour GS, Vazquez M, Patawah BL. Aqueous air cathodes and catalysts for metal-air batteries. Curr Opin Electrochem 2023;38:101246.

79. Meng X, Zhang X, Rageloa J, Liu Z, Wang W. Coordination strategy to prepare high-performance Fe-Nx catalysts for Al-air batteries. J Power Sources 2023;567:232988.

80. Yu Y, Zuo Y, Liu Y, et al. Directly electrospun carbon nanofibers incorporated with Mn3O4 nanoparticles as bending-resistant cathode for flexible Al-air batteries. Nanomaterials 2020;10:216.

81. Ma Y, Sumboja A, Zang W, et al. Flexible and wearable all-solid-state Al-air battery based on iron carbide encapsulated in electrospun porous carbon nanofibers. ACS Appl Mater Interfaces 2019;11:1988-95.

82. Li K, Wang C, Li H, et al. Heterostructural interface in Fe3C-TiN quantum dots boosts oxygen reduction reaction for Al-air batteries. ACS Appl Mater Interfaces 2021;13:47440-8.

83. Liu D, Tian J, Tang Y, et al. High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chem Eng J 2021;406:126772.

84. Akgenc B, Sarikurt S, Yagmurcukardes M, Ersan F. Aluminum and lithium sulfur batteries: a review of recent progress and future directions. J Phys Condens Matter 2021;33:253002.

85. Cheng R, Jiang M, Li K, et al. Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries. Chem Eng J 2021;425:130603.

86. Wang M, Li Y, Fang J, et al. Superior oxygen reduction reaction on phosphorus-doped carbon dot/graphene aerogel for all-solid-state flexible Al-air batteries. Adv Energy Mater 2020;10:1902736.

87. Shui Z, Liao X, Lei Y, et al. MnO2 synergized with N/S codoped graphene as a flexible cathode efficient electrocatalyst for advanced honeycomb-shaped stretchable aluminum-air batteries. Langmuir 2020;36:12954-62.

88. Wang Z, Zhou H, Xue J, et al. Ultrasonic-assisted hydrothermal synthesis of cobalt oxide/nitrogen-doped graphene oxide hybrid as oxygen reduction reaction catalyst for Al-air battery. Ultrason Sonochem 2021;72:105457.

89. Huang L, Zang W, Ma Y, et al. In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery. Chem Eng J 2021;421:129973.

90. Long G, Liu Y, Chen M, et al. Effects of ultrasound on synthesis and performance of manganese-based/ graphene oxide oxygen reduction catalysts for aluminum-air batteries. J Power Sources 2023;573:233150.

91. Xia Z, Zhu Y, Zhang W, et al. Cobalt ion intercalated MnO2/C as air cathode catalyst for rechargeable aluminum-air battery. J Alloys Compd 2020;824:153950.

92. Hosseini S, Chiu C, Pourzolfaghar H, Su C, Li Y. Techno-economically feasible beverage can as superior anode in rechargeable Al-air batteries. Sustain Mater Technol 2023;35:e00560.

93. Yu L, Xu N, Zhu T, Xu Z, Sun M, Geng D. La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst. Int J Hydrogen Energy 2020;45:30583-91.

94. Shui Z, Zhao W, Xiao H, et al. Controllable porous perovskite with three-dimensional ordered structure as an efficient oxygen reduction reaction electrocatalyst for flexible aluminum-air battery. J Power Sources 2022;523:231028.

95. Chen J, Zhu Q, Jiang L, et al. Rechargeable aqueous aluminum organic batteries. Angew Chem Int Ed 2021;60:5794-9.

96. Yoo D, Kim J, Shin J, Kim KJ, Choi JW. Stable performance of aluminum-metal battery by incorporating lithium-ion chemistry. ChemElectroChem 2017;4:2345-51.

97. Sun XG, Zhang Z, Guan H, et al. A sodium-aluminum hybrid battery. Meet Abstr 2017;MA2017-02:564.

98. Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K. Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review. Batteries 2022;8:133.

99. Zeng X, Peng J, Guo Y, Zhu H, Huang X. Research progress on Na3V2(PO4)3 cathode material of sodium ion battery. Front Chem 2020;8:635.

100. Ji B, Zhang F, Sheng M, Tong X, Tang Y. A Novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density. Adv Mater 2017;29:1604219.

101. Parans Paranthaman M, Liu H, Sun XG, Dai S, Brown GM. Chapter 13 - aluminum-ion batteries for medium- and large-scale energy storage. In: Advances in batteries for medium and large-scale energy storage. Elsevier; 2015. pp. 463-74.

102. Ghavidel MZ, Kupsta MR, Le J, Feygin E, Espitia A, Fleischauer MD. Electrochemical formation of four Al-Li phases (β-AlLi, Al2Li3, AlLi2-x, Al4Li9) at intermediate temperatures. J Electrochem Soc 2019;166:A4034-40.

103. Li D, Chu F, He Z, Cheng Y, Wu F. Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: the roles of prelithiation and working mechanism. Mater Today 2022;58:80-90.

104. Wang H, Tan H, Luo X, et al. The progress on aluminum-based anode materials for lithium-ion batteries. J Mater Chem A 2020;8:25649-62.

105. Zheng T, Boles ST. Lithium aluminum alloy anodes in Li-ion rechargeable batteries: past developments, recent progress, and future prospects. Prog Energy 2023;5:032001.

106. Li H, Yamaguchi T, Matsumoto S, et al. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun 2020;11:1584.

107. Zhang W. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 2011;196:13-24.

108. Gu X, Dong J, Lai C. Li-containing alloys beneficial for stabilizing lithium anode: a review. Eng Rep 2021;3:e12339.

109. Sun J, Zeng Q, Lv R, et al. A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Stor Mater 2018;15:209-17.

110. Ryu J, Kang J, Kim H, Lee JH, Lee H, Park S. Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Stor Mater 2020;33:164-72.

111. Zheng T, Kramer D, Mönig R, Boles ST. Aluminum foil anodes for Li-ion rechargeable batteries: the role of Li solubility within β-LiAl. ACS Sustain Chem Eng 2022;10:3203-10.

112. Yu Y, Li S, Fan H, et al. Optimal annealing of Al foil anode for prelithiation and full-cell cycling in Li-ion battery: the role of grain boundaries in lithiation/delithiation ductility. Nano Energy 2020;67:104274.

113. Crowley PJ, Scanlan KP, Manthiram A. Diffusional lithium trapping as a failure mechanism of aluminum foil anodes in lithium-ion batteries. J Power Sources 2022;546:231973.

114. Chang X, Xie Z, Liu Z, Zheng X, Zheng J, Li X. Enabling high performance lithium storage in aluminum: the double edged surface oxide. Nano Energy 2017;41:731-7.

115. Sun X, Yang C, Zhao Y, et al. Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium ion batteries. Adv Funct Mater 2022;32:2109112.

116. Gu J, Li B, Du Z, Zhang C, Zhang D, Yang S. Multi-atomic layers of metallic aluminum for ultralong life lithium storage with high volumetric capacity. Adv Funct Mater 2017;27:1700840.

117. Zhang M, Xiang L, Galluzzi M, et al. Uniform distribution of alloying/dealloying stress for high structural stability of an Al anode in high-areal-density lithium-ion batteries. Adv Mater 2019;31:e1900826.

118. Fan H, Chen B, Li S, et al. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: electronic percolation and electrochemical cycling stability. Nano Lett 2020;20:896-904.

119. Kwon GD, Moyen E, Lee YJ, Joe J, Pribat D. Graphene-coated aluminum thin film anodes for lithium-ion batteries. ACS Appl Mater Interfaces 2018;10:29486-95.

120. Muñoz-torrero D, Leung P, García-quismondo E, et al. Investigation of different anode materials for aluminium rechargeable batteries. J Power Sources 2018;374:77-83.

121. Wang P, Chen H, Li N, et al. Dense graphene papers: toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Stor Mater 2018;13:103-11.

122. Yan C, Lv C, Wang L, et al. Architecting a stable high-energy aqueous Al-ion battery. J Am Chem Soc 2020;142:15295-304.

123. Sovizi M, Afshari M. Effect of nano zirconia on electrochemical performance, corrosion behavior and microstructure of Al-Mg-Sn-Ga anode for aluminum batteries. J Alloys Compd 2019;792:1088-94.

124. Asfia MP, Pourfarzad H, Kashani H, Olia MH, Badrnezhad R. Study of uniform and localized corrosion behaviour of aluminum alloy 1050 as Al/AgO battery anode in aerated NaCl in the presence of an organosulfur inhibitor. J Electrochem Soc 2020;167:140527.

125. Chen H, Xu H, Zheng B, et al. Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS Appl Mater Interfaces 2017;9:22628-34.

126. Ran Q, Shi H, Meng H, et al. Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat Commun 2022;13:576.

127. Zheng J, Bock DC, Tang T, et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat Energy 2021;6:398-406.

128. Shen X, Sun T, Yang L, et al. Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode. Nat Commun 2021;12:820.

129. Afshari M, Abbasi R, Sovizi MR. Evaluation of nanometer-sized zirconium oxide incorporated Al-Mg-Ga-Sn alloy as anode for alkaline aluminum batteries. Trans Nonferr Metal Soc 2020;30:90-8.

130. Mahmood N, De Castro IA, Pramoda K, Khoshmanesh K, Bhargava SK, Kalantar-zadeh K. Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. Energy Stor Mater 2019;16:455-80.

131. Mahmood N, Hou Y. Electrode nanostructures in lithium-based batteries. Adv Sci 2014;1:1400012.

132. Kuksenko SP. Aluminum foil as anode material of lithium-ion batteries: effect of electrolyte compositions on cycling parameters. Russ J Electrochem 2013;49:67-75.

133. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich D. Aluminum negative electrode in lithium ion batteries. J Power Sources 2001;97-98:185-7.

134. Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 2020;13:3330-60.

135. Li Z, Liu J, Niu B, Li J, Kang F. A Novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte. Small 2018;14:e1800745.

136. Song Y, Jiao S, Tu J, et al. A long-life rechargeable Al ion battery based on molten salts. J Mater Chem A 2017;5:1282-91.

137. Wedepohl K. The composition of the continental crust. Geochim Cosmochim Acta 1995;59:1217-32.

138. Tang W, Zhu Y, Hou Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ Sci 2013;6:2093.

139. Wang D, Zeng Q, Zhou G, et al. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 2013;1:9382.

140. Li X, Wei B. Supercapacitors based on nanostructured carbon. Nano Energy 2013;2:159-73.

141. Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS. Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 2013;6:1388.

142. Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J Electrochem Soc 2013;160:A1781-4.

143. Levitin G, Yarnitzky C, Licht S. Fluorinated graphites as energetic cathodes for nonaqueous Al batteries. Electrochem Solid State Lett 2002;5:A160.

144. Li Z, Huang Y, Yuan L, Hao Z, Huang Y. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015;92:41-63.

145. Zhang K, Kirlikovali KO, Varma RS, et al. Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications. ACS Appl Mater Interfaces 2020;12:27821-52.

146. Tu J, Wang J, Li S, et al. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale 2019;11:12537-46.

147. Wang S, Kravchyk KV, Krumeich F, Kovalenko MV. Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery. ACS Appl Mater Interfaces 2017;9:28478-85.

148. Ellingsen LA, Holland A, Drillet JF, et al. Environmental screening of electrode materials for a rechargeable aluminum battery with an AlCl3/EMIMCl electrolyte. Materials 2018;11:936.

149. Murphy DW, Christian PA, Disalvo FJ, Carides JN, Waszczak JV. Lithium Incorporation by V6O13 and related vanadium (+4, +5) oxide cathode materials. J Electrochem Soc 1981;128:2053-60.

150. Zhang C, He R, Zhang J, Hu Y, Wang Z, Jin X. Amorphous carbon-derived nanosheet-bricked porous graphite as high-performance cathode for aluminum-ion batteries. ACS Appl Mater Interfaces 2018;10:26510-6.

151. Yan Q, Shen Y, Miao Y, Wang M, Yang M, Zhao X. Vanadium oxychloride as cathode for rechargeable aluminum batteries. J Alloys Compd 2019;806:1109-15.

152. Shi M, Wei W, Jiang Z, Han H, Gao J, Xie J. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv 2016;6:25255-66.

153. Hu Z, Zhang H, Wang H, Zhang F, Li Q, Li H. Nonaqueous aluminum ion batteries: recent progress and prospects. ACS Mater Lett 2020;2:887-904.

154. González JR, Nacimiento F, Cabello M, Alcántara R, Lavela P, Tirado JL. Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Adv 2016;6:62157-64.

155. Hong H, Liu J, Huang H, et al. Ordered macro-microporous metal-organic framework single crystals and their derivatives for rechargeable aluminum-ion batteries. J Am Chem Soc 2019;141:14764-71.

156. Hu Y, Huang H, Yu D, et al. All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode. Nanomicro Lett 2021;13:159.

157. Gu S, Wang H, Wu C, Bai Y, Li H, Wu F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Stor Mater 2017;6:9-17.

158. Nethravathi C, Viswanath B, Michael J, Rajamath M. Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 2012;50:4839-46.

159. Jiang J, Feng Y, Mahmood N, Liu F, Hou Y. SnS2/graphene composites: excellent anode materials for lithium ion battery and photolysis catalysts. Sci Adv Mat 2013;5:1667-75.

160. Choi S, Go H, Lee G, Tak Y. Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries. Phys Chem Chem Phys 2017;19:8653-6.

161. Jiao H, Wang C, Tu J, Tian D, Jiao S. A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite. Chem Commun 2017;53:2331-4.

162. Wang C, Li J, Jiao H, Tu J, Jiao S. The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl3-urea liquid electrolyte. RSC Adv 2017;7:32288-93.

163. Zhu N, Zhang K, Wu F, Bai Y, Wu C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater Adv 2021;2021:9204217.

164. Rehman S, Gu X, Khan K, et al. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv Energy Mat J 2016;6:1502518.

165. Huang X, Liu Y, Liu C, Zhang J, Noonan O, Yu C. Rechargeable aluminum-selenium batteries with high capacity. Chem Sci 2018;9:5178-82.

166. Hu Y, Sun D, Luo B, Wang L. Recent progress and future trends of aluminum batteries. Energy Technol 2019;7:86-106.

167. Nasim Khan RN, Mahmood N, Lv C, et al. Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Adv 2014;4:7374.

168. Lin MC, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015;520:325-8.

169. Kim I, Jang S, Lee KH, Tak Y, Lee G. In situ polymerized solid electrolytes for superior safety and stability of flexible solid-state Al-ion batteries. Energy Stor Mater 2021;40:229-38.

170. Lee D, Lee G, Tak Y. Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery. Nanotechnology 2018;29:36LT01.

171. Wu F, Zhu N, Bai Y, Gao Y, Wu C. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green Energy Environ 2018;3:71-7.

172. Wang H, Gu S, Bai Y, et al. Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J Mater Chem A 2015;3:22677-86.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/