REFERENCES
1. Shortliffe EH. Mycin: a knowledge-based computer program applied to infectious diseases. In: Proceedings of the Annual Symposium on Computer Application in Medical Care; 1977 Oct 3-5; Washington, D.C., USA. pp. 66-9.
2. Kuperman GJ, Gardner RM, Pryor TA. HELP: a dynamic hospital information system. New York: Springer Science & Business Media; 2013. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=T1fSBwAAQBAJ&oi=fnd&pg=PR7&dq=HELP:+a+dynamic+hospital+information+system&ots=BqlXJePDPo&sig=vhl5EtzBbZJMGQJU6dzph_3UkD4#v=onepage&q=HELP%3A%20a%20dynamic%20hospital%20information%20system&f=false [Last accessed 12 September 2025].
3. Spinelli A, Carrano FM, Laino ME, et al. Artificial intelligence in colorectal surgery: an AI-powered systematic review. Tech Coloproctol. 2023;27:615-29.
4. Ouyang D, Theurer J, Stein NR, et al. Electrocardiographic deep learning for predicting post-procedural mortality: a model development and validation study. Lancet Digit Health. 2024;6:e70-8.
5. Le MH, Le TT, Tran PP. AI in surgery: navigating trends and managerial implications through bibliometric and text mining odyssey. Surg Innov. 2024;31:630-45.
6. Burcharth J, Pedersen M, Bisgaard T, Pedersen C, Rosenberg J, Burney RE. Nationwide prevalence of groin hernia repair. PLoS ONE. 2013;8:e54367.
7. Zygomalas A, Kalles D, Katsiakis N, Anastasopoulos A, Skroubis G. Artificial intelligence assisted recognition of anatomical landmarks and laparoscopic instruments in transabdominal preperitoneal inguinal hernia repair. Surg Innov. 2024;31:178-84.
8. Takeuchi M, Collins T, Ndagijimana A, et al. Automatic surgical phase recognition in laparoscopic inguinal hernia repair with artificial intelligence. Hernia. 2022;26:1669-78.
9. Zang C, Turkcan MK, Narasimhan S, et al. Surgical phase recognition in inguinal hernia repair - AI-based confirmatory baseline and exploration of competitive models. Bioengineering. 2023;10:654.
10. Ortenzi M, Rapoport Ferman J, Antolin A, et al. A novel high accuracy model for automatic surgical workflow recognition using artificial intelligence in laparoscopic totally extraperitoneal inguinal hernia repair (TEP). Surg Endosc. 2023;37:8818-28.
11. Page MJ, Mckenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
12. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of case-control studies in meta-analyses. Eur J Epidemiol. 2011;25:603-5. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [Last accessed on 12 Sep 2025]
13. Cui P, Zhao S, Chen W, Peng J. Identification of the vas deferens in laparoscopic inguinal hernia repair surgery using the convolutional neural network. J Healthc Eng. 2021;2021:1-10.
14. Taha A, Enodien B, Frey DM, Taha-mehlitz S. The development of artificial intelligence in hernia surgery: a scoping review. Front Surg. 2022;9:908014.
15. Elfanagely O, Mellia JA, Othman S, Basta MN, Mauch JT, Fischer JP. Computed tomography image analysis in abdominal wall reconstruction: a systematic review. Plast Reconstr Surg Glob Open. 2020;8:e3307.
16. Elhage SA, Deerenberg EB, Ayuso SA, et al. Development and validation of image-based deep learning models to predict surgical complexity and complications in abdominal wall reconstruction. JAMA Surg. 2021;156:933.
17. Niebuhr H, Born O. Image tracking system eine neue Technik für die sichere und kostensparende laparoskopische operation. Chirurg. 2000;71:580-4.
18. Haddaway NR, Page MJ, Pritchard CC, Mcguinness LA. PRISMA2020: an R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev. 2022;18:e1230.
19. Moher D, Shamseer L, Clarke M, et al. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.
20. Takeuchi M, Collins T, Lipps C, et al. Towards automatic verification of the critical view of the myopectineal orifice with artificial intelligence. Surg Endosc. 2023;37:4525-34.
21. Choksi S, Szot S, Zang C, et al. Bringing artificial intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg Endosc. 2023;37:8778-84.
22. Meskó B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med. 2020;3:126.
23. Lima DL, Kasakewitch J, Nguyen DQ, et al. Machine learning, deep learning and hernia surgery. Are we pushing the limits of abdominal core health? Hernia. 2024;28:1405-12.
24. Gagandeep K, Rishabh M, Vyas S. Artificial intelligence (AI) startups in health sector in India: challenges and regulation in India. In: Goyal D, Kumar A, Piuri V, Paprzycki M, Editors. Proceedings of the Third International Conference on Information Management and Machine Intelligence; 2021 Dec 23-24; Jaipur, India. Singapore: Springer; 2023. pp. 203-15.
25. Pharmaphorum. Sensely and Mayo Clinic take virtual nurse one step further. Available from: https://pharmaphorum.com/news/sensely-mayo-clinic-develop-virtual-doctor. [Last accessed on 12 Sep 2025].
26. Pharmaphorum. FDA approves Caption Health’s AI-driven cardiac ultrasound software. Available from: https://pharmaphorum.com/news/fda-approves-caption-healths-ai-driven-cardiac-imaging-software. [Last accessed on 12 Sep 2025].
27. Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270:414-21.
28. Zhang B, Ghanem A, Simes A, Choi H, Yoo A. Surgical workflow recognition with 3DCNN for sleeve gastrectomy. Int J Comput Assist Radiol Surg. 2021;16:2029-36.
29. Kitaguchi D, Takeshita N, Matsuzaki H, et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg Endosc. 2019;34:4924-31.
30. Ward TM, Hashimoto DA, Ban Y, et al. Automated operative phase identification in peroral endoscopic myotomy. Surg Endosc. 2020;35:4008-15.
31. Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2016;36:86-97.
32. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3:210-29.
33. Jin Y, Dou Q, Chen H, et al. SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans Med Imaging. 2018;37:1114-26.
34. Czempiel T, Paschali M, Keicher M, et al. TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In: Martel AL, Abolmaesumi P, Stoyanov D, et al., Editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2020; 2020 Oct 4-8; Lima, Peru. Cham: Springe; 2020. pp. 343-52.
35. Jin Y, Long Y, Chen C, Zhao Z, Dou Q, Heng PA. Temporal memory relation network for workflow recognition from surgical video. IEEE Trans Med Imaging. 2021;40:1911-23.
36. Gao X, Jin Y, Long Y, Dou Q, Heng PA. Trans-SVNet: accurate phase recognition from surgical videos via hybrid embedding aggregation transformer. In: De Bruijne M, Cattin PC, Cotin S, et al., Editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. 2021 Sep 27-Oct 1; Strasbourg, France. Cham: Springer; 2021. pp. 593-603.