Article | Open Access

Enhancing the activity and stability of RuO2-based catalyst via nano-confinement effect for O2 evolution reaction in acid electrolyte

Views:  12
Energy Mater 2025;5:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

The oxygen evolution reaction (OER), as a pivotal process in electrochemical water splitting, directly determines energy conversion efficiency. Ruthenium (Ru)-based catalysts have gained considerable attention in recent years due to their decent intrinsic activity in acidic media. Previous studies have demonstrated that while Ru exhibits superior OER activity compared to RuO2 in acidic environments, its operational stability remains markedly inferior. This performance dichotomy, coupled with the persistent challenges of active species dissolution and catalyst particle aggregation during prolonged operation, significantly hinders their practical implementation in electrochemical systems. To address these challenges, this study develops a CNT/Fe-Ni@RuO2@PANI-350 composite catalyst composed of RuO2 nanoparticles supported on bimetallic Fe-Ni modified carbon nanotubes (CNT/Fe-Ni) and encapsulated with polyaniline (PANI). This catalyst utilizes the anchoring effect of bimetallic Fe-Ni sites and the spatial confinement effect of PANI coating layer, effectively inhibiting the dissolution and agglomeration of RuO2 during both high-temperature processing and electrochemical operation, thereby significantly enhancing electrochemical stability. The anchoring strength of RuO2 nanoparticles on CNT/Fe-Ni support via the nano-confinement effect, as well as the microscopic mechanisms underlying the performance enhancement, are revealed by density functional theory (DFT) calculations and experimental characterizations. The composite catalyst demonstrates fascinating OER performance in 0.5 M H2SO4, exhibiting a low Tafel slope of 39.1 mV dec-1 as well as low overpotentials of 188 mV and 225 mV at current densities of 10 mA cm-2 and 100 mA cm-2, respectively. Remarkably, the composite catalyst demonstrates significantly enhanced stability, exhibiting only ~30 mV overpotential increase during 150 h continuous operation at 10 mA cm-2. This study highlights a simple yet effective nano-confinement strategy to address the challenges of Ru-based catalysts, and provides a practical paradigm for designing and preparing highly efficient OER electrocatalysts with enhanced stability.

Keywords

Oxygen evolution reaction (OER), ruthenium (Ru)-based catalysts, nano-confinement strategy, electrochemical stability

Cite This Article

Liu S, Tan H, Dai G, Xiong S, Zhao Y, Li B. Enhancing the activity and stability of RuO2-based catalyst via nano-confinement effect for O2 evolution reaction in acid electrolyte. Energy Mater 2025;5:[Accept]. http://dx.doi.org/10.20517/energymater.2025.97

Copyright

...
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 0 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
Batteries | Solar cells | Fuel cell | Supercapacitors | Lithium batteries | Lithium-ion batteries | Electrode | Water splitting | Catalysis |
Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/