Article | Open Access

High density polyethylene with phase change materials for thermal energy management

Views:  23
Energy Mater 2024;4:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

Phase change materials (PCMs) represent an innovative solution to passively manage device temperature or store heat, taking advantage of the material phase transitions. In this work, the attitude of high density polyethylene (HDPE) for the shape stabilization of three selected organic PCMs with a melting temperature close to 55 °C was investigated. Composites with PCM content in the range of 50-61 wt.% were produced by melt compounding, and lab-scale panels were produced by compression molding. The ability of the supporting olefinic matrix to stabilize the PCM and contain leakage was verified and compared through thermo-mechanical characterization. Moreover, expanded graphite was introduced according to a novel under-vacuum impregnation process in order to provide an extra stabilizing contribution, resulting in an outstanding thermal conductivity increase of up to 1.6 W/m·K, and a maximized enthalpy of 112 J/g. Besides the shape stability, HDPE also improves the mechanical properties of PCM-based composites, as documented by detailed and extended characterization through cold and hot compression tests, flexural tests, Vicat and shore A tests. The thermal management effect of the materials is quantified through infrared thermography, by proportionally relating the temperature lags to the high melting/crystallization enthalpy of the investigated products. In view of thermal management applications in the range of 30-60 °C, the main properties of selected HDPE panels with different PCMs are summarized and compared.

Keywords

High density polyethylene, phase change materials, thermal management, thermal energy storage, expanded graphite, thermal conductivity, mechanical properties

Cite This Article

Sacchet S, Valentini F, Rizzo C, Po R, Fambri L. High density polyethylene with phase change materials for thermal energy management. Energy Mater 2024;4:[Accept]. http://dx.doi.org/10.20517/energymater.2024.112

Copyright

...
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 0 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
Batteries | Solar cells | Fuel cell | Supercapacitors | Lithium batteries | Lithium-ion batteries | Electrode | Water splitting | Catalysis |
Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/