REFERENCES

1. der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 2017;1859:1558-72.

2. Sánchez V, Baumann A, Brandt A, Wodak MF, Staltner R, Bergheim I. Oral supplementation of phosphatidylcholine attenuates the onset of a diet-induced metabolic dysfunction-associated steatohepatitis in female C57BL/6J mice. Cell Mol Gastroenterol Hepatol 2024;17:785-800.

3. Osipova D, Kokoreva K, Lazebnik L, et al. Regression of liver steatosis following phosphatidylcholine administration: a review of molecular and metabolic pathways involved. Front Pharmacol 2022;13:797923.

4. Stremmel W, Ehehalt R, Staffer S, et al. Mucosal protection by phosphatidylcholine. Dig Dis 2012;30 Suppl 3:85-91.

5. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009;49:1877-87.

6. Xin D, Zong-Shun L, Bang-Mao W, Lu Z. Expression of intestinal tight junction proteins in patients with non-alcoholic fatty liver disease. Hepatogastroenterology 2014;61:136-40.

7. Zhong Y, Zhou L, Wang H, et al. Kindlin-2 maintains liver homeostasis by regulating GSTP1-OPN-mediated oxidative stress and inflammation in mice. J Biol Chem 2024;300:105601.

8. Fickert P, Pollheimer MJ, Beuers U, et al. International PSC Study Group (IPSCSG). Characterization of animal models for primary sclerosing cholangitis (PSC). J Hepatol 2014;60:1290-303.

9. Fickert P, Fuchsbichler A, Wagner M, et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 2004;127:261-74.

10. Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451-62.

11. Durie PR, Kent G, Phillips MJ, Ackerley CA. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 2004;164:1481-93.

12. Blanco PG, Zaman MM, Junaidi O, et al. Induction of colitis in cftr-/- mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol 2004;287:G491-6.

13. Meerman L, Koopen NR, Bloks V, et al. Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria. Gastroenterology 1999;117:696-705.

14. Libbrecht L, Meerman L, Kuipers F, Roskams T, Desmet V, Jansen P. Liver pathology and hepatocarcinogenesis in a long-term mouse model of erythropoietic protoporphyria. J Pathol 2003;199:191-200.

15. Hatano R, Takeda A, Abe Y, et al. Loss of ezrin expression reduced the susceptibility to the glomerular injury in mice. Sci Rep 2018;8:4512.

16. Sakisaka S, Kawaguchi T, Taniguchi E, et al. Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2001;33:1460-8.

17. Stremmel W, Staffer S, Schneider MJ, et al. Genetic mouse models with intestinal-specific tight junction deletion resemble an ulcerative colitis phenotype. J Crohns Colitis 2017;11:1247-57.

18. Stremmel W, Staffer S, Gan-Schreier H, Wannhoff A, Bach M, Gauss A. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2. Biochim Biophys Acta 2016;1861:1161-9.

19. Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013;10:352-61.

20. Lichtenberger LM. The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol 1995;57:565-83.

21. Ehehalt R, Wagenblast J, Erben G, et al. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoElectrospray-tandem mass spectrometry. Scand J Gastroenterol 2004;39:737-42.

22. Stremmel W, Lukasova M, Weiskirchen R. The neglected biliary mucus and its phosphatidylcholine content: a putative player in pathogenesis of primary cholangitis-a narrative review article. Ann Transl Med 2021;9:738.

23. El-Khairi R, Vallier L. The role of hepatocyte nuclear factor 1β in disease and development. Diabetes Obes Metab 2016;18 Suppl 1:23-32.

24. Ferrè S, Igarashi P. New insights into the role of Hnf-1β in kidney (patho)physiology. Pediatr Nephrol 2019;34:1325-35.

25. Mouse ENCODE transcriptome data. Available from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=21410. [Last accessed on 8 Oct 2024].

26. Tholen LE, Latta F, Martens JHA, Hoenderop JGJ, de Baaij JHF. Transcription factor Hnf1β controls a transcriptional network regulating kidney cell structure and tight junction integrity. Am J Physiol Renal Physiol 2023;324:F211-24.

27. Rodrigo-Torres D, Affò S, Coll M, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 2014;60:1367-77.

28. Coffinier C, Gresh L, Fiette L, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of Hnf1beta. Development 2002;129:1829-38.

29. Invernizzi F, Cilla M, Trapani S, et al. Special Interest Group Gender in Hepatology of the Italian Association for the Study of the Liver (AISF). Gender and autoimmune liver diseases: relevant aspects in clinical practice. J Pers Med 2022;12:925.

30. Solar M, Cardalda C, Houbracken I, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009;17:849-60.

31. Theodosiou M, Widmaier M, Böttcher RT, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife 2016;5:e10130.

32. Hillebrandt S, Wasmuth HE, Weiskirchen R, et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 2005;37:835-43.

33. Ray MK, Fagan SP, Brunicardi FC. The Cre-loxP system: a versatile tool for targeting genes in a cell- and stage-specific manner. Cell Transplant 2000;9:805-15.

34. Ren S, Li M, Cai H, Hudgins S, Furth PA. A simplified method to prepare PCR template DNA for screening of transgenic and knockout mice. Contemp Top Lab Anim Sci 2001;40:27-30.

35. Gopalkrishna V, Francis A, Sharma JK, Das BC. A simple and rapid method of high quantity DNA isolation from cervical scrapes for detection of human papillomavirus infection. J Virol Methods 1992;36:63-72.

36. Boesenberg-smith KA, Pessarakli MM, Wolk DM. Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting. Clinical Microbiology Newsletter 2012;34:1-6.

37. The Jackson Laboratory. Stock Tg(Hnf1b-cre/ERT2)1Jfer/J. Available from: https://www.jax.org/strain/027681 [Last accessed on 8 Oct 2024].

38. Stremmel W, Staffer S, Weiskirchen R. Phosphatidylcholine passes by paracellular transport to the apical side of the polarized biliary tumor cell line Mz-ChA-1. Int J Mol Sci 2019;20:4034.

39. Harrison SD Jr, Burdeshaw JA, Crosby RG, Cusic AM, Denine EP. Hematology and clinical chemistry reference values for C57BL/6 X DBA/2 F1 mice. Cancer Res 1978;38:2636-39.

40. Otto GP, Rathkolb B, Oestereicher MA, Lengger CJ, Moerth C, Micklich K, et al. Clinical chemistry reference intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ mice (mus musculus). J Am Assoc Lab Anim Sci 2016;55:375-86.

41. Lindor KD, Kowdley KV, Harrison ME. American college of gastroenterology. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol 2015;110:646-59.

42. Lindström L, Hultcrantz R, Boberg KM, Friis-Liby I, Bergquist A. Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2013;11:841-6.

43. Takakura WR, Tabibian JH, Bowlus CL. The evolution of natural history of primary sclerosing cholangitis. Curr Opin Gastroenterol 2017;33:71-7.

44. Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J Gastroenterol 2006;12:3496-511.

45. Hohenester S, Wenniger LM, Paulusma CC, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012;55:173-83.

46. Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol 2017;67:1298-323.

47. Benavides F, Rülicke T, Prins JB, et al. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA working group report. Lab Anim 2020;54:135-48.

48. NC3Rs. National Centre for the Replacement Refinement & Reduction of Animals in Research. The importance of background strains in GA mice. Available from: https://nc3rs.org.uk/3rs-resources/importance-background-strains-ga-mice [Last accessed on 8 Oct 2024].

49. Leyendecker JR. Gadoxetate disodium for contrast magnetic resonance imaging of the liver. Gastroenterol Hepatol 2009;5:698.

50. Beuers U, Kullak-Ublick GA, Pusl T, Rauws ER, Rust C. Medical treatment of primary sclerosing cholangitis: a role for novel bile acids and other (post-)transcriptional modulators? Clin Rev Allergy Immunol 2009;36:52-61.

51. Fickert P, Hirschfield GM, Denk G, et al. European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol 2017;67:549-58.

Metabolism and Target Organ Damage
ISSN 2769-6375 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/