REFERENCES

1. He, X.; Chai, H.; Luo, Y.; Min, L.; Debliquy, M.; Zhang, C. Metal oxide semiconductor gas sensing materials for early lung cancer diagnosis. J. Adv. Ceram. 2023, 12, 207-27.

2. Xue, L.; Cui, J.; Li, R.; et al. Interface engineering p-n heterostructured core-shell mesoporous particles for cascade catalysis promoted gas sensing. Adv. Mater. 2025, 37, e2416006.

3. Hooshmand, S.; Kassanos, P.; Keshavarz, M.; et al. Wearable nano-based gas sensors for environmental monitoring and encountered challenges in optimization. Sensors. (Basel). 2023, 23, 8648.

4. Wawrzyniak, J. Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry. Sensors. (Basel). 2023, 23, 9548.

5. Zhang, Z.; Ma, J.; Deng, Y.; et al. Polymerization-induced aggregation approach toward uniform Pd nanoparticle-decorated mesoporous SiO2/WO3 microspheres for hydrogen sensing. ACS. Appl. Mater. Interfaces. 2023, 15, 15721-31.

6. Xue, L.; Ren, Y.; Li, Y.; et al. Pt-Pd nanoalloys functionalized mesoporous SnO2 spheres: tailored synthesis, sensing mechanism, and device integration. Small 2023, 19, e2302327.

7. Li, C.; Choi, P. G.; Masuda, Y. Highly sensitive and selective gas sensors based on NiO/MnO2@NiO nanosheets to detect allyl mercaptan gas released by humans under psychological stress. Adv. Sci. (Weinh). 2022, 9, e2202442.

8. Park, S. J.; Moon, Y. K.; Park, S. W.; et al. Highly sensitive and selective real-time breath isoprene detection using the gas reforming reaction of MOF-derived nanoreactors. ACS. Appl. Mater. Interfaces. 2023, 15, 7102-11.

9. Bu, W.; Zhou, Y.; Huang, D.; et al. Ppb-level unsymmetrical dimethylhydrazine detection based on In2O3 hollow microspheres with Nd doping. J. Hazard. Mater. 2024, 472, 134508.

10. Shao, X.; Zhang, D.; Zhou, L.; et al. Recent advances in semiconductor gas sensors for thermal runaway early-warning monitoring of lithium-ion batteries. Coord. Chem. Rev. 2025, 535, 216624.

11. Zhang, C.; Wang, T.; Zhang, G.; et al. Rational design and fabrication of MEMS gas sensors with long-term stability: a comprehensive review. Adv. Sci. (Weinh). 2025, 12, e11555.

12. Wang, C.; Chen, Z.; Chan, C. L. J.; et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 2024, 7, 157-67.

13. Sung, S. H.; Suh, J. M.; Hwang, Y. J.; Jang, H. W.; Park, J. G.; Jun, S. C. Data-centric artificial olfactory system based on the eigengraph. Nat. Commun. 2024, 15, 1211.

14. Deng, Y.; Chen, K.; Luo, W.; Zou, Y.; Deng, Y. Tailoring chemiresistive nanomaterials toward integrated circuit compatible fabrication of gas sensors. Adv. Mater. 2025, e08411.

15. Yang, X.; Deng, Y.; Yang, H.; et al. Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges. Adv. Sci. (Weinh). 2022, 10, e2204810.

16. Gao, Z.; Fu, Y.; Zhang, Q.; et al. Plasmonic printing of high-performance metal oxide electronics under room temperature. Nat. Mater. 2025, 24, 2001-10.

17. Wang, C.; Song, Y.; Zhao, M.; Lu, H.; Wang, J.; Zou, X. Material design and mechanism interpretation of metal oxide nanofibers for improving gas sensitivity. Coord. Chem. Rev. 2025, 531, 216492.

18. Sivaperuman, K.; Thomas, A.; Thangavel, R.; et al. Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: a comprehensive review and future prospects. Prog. Mater. Sci. 2024, 142, 101222.

19. Sharma, A.; Eadi, S. B.; Noothalapati, H.; Otyepka, M.; Lee, H. D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530-77.

20. Wang, G.; Yang, S.; Cao, L.; et al. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord. Chem. Rev. 2021, 445, 214086.

21. Zhu, L. Y.; Ou, L. X.; Mao, L. W.; Wu, X. Y.; Liu, Y. P.; Lu, H. L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nanomicro. Lett. 2023, 15, 89.

22. Jeong, S. Y.; Moon, Y. K.; Wang, J.; Lee, J. H. Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 2023, 14, 233.

23. Xie, W.; Huang, X.; Zhu, C.; et al. A versatile synthesis platform based on polymer cubosomes for a library of highly ordered nanoporous metal oxides particles. Adv. Mater. 2024, 36, e2313920.

24. Jiang, F.; Deng, Y.; Chen, K.; et al. A straightforward solvent-pair-enabled multicomponent coassembly approach toward noble-metal-nanoparticle-decorated mesoporous tungsten oxide for trace ammonia sensing. Adv. Mater. 2024, 36, e2313547.

25. Zhou, X.; Zhu, Y.; Luo, W.; et al. Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J. Mater. Chem. A. 2016, 4, 15064-71.

26. Yan, Y.; Lan, X.; Li, Y.; et al. Oxygen-vacancy-rich SnO2 nanoparticles based ultralow-power mems sensor for nitrogen dioxide detection. ACS. Appl. Nano. Mater. 2025, 8, 6920-9.

27. Zhu, L.; Yuan, K.; Yang, J.; et al. Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sensors. Actuat. B-Chem. 2019, 290, 233-41.

28. Guo, M.; Luo, N.; Chen, Y.; Fan, Y.; Wang, X.; Xu, J. Fast-response MEMS xylene gas sensor based on CuO/WO3 hierarchical structure. J. Hazard. Mater. 2022, 429, 127471.

29. Wang, T.; Liu, S.; Sun, P.; Wang, Y.; Shimanoe, K.; Lu, G. Unexpected and enhanced electrostatic adsorption capacity of oxygen vacancy-rich cobalt-doped In2O3 for high-sensitive MEMS toluene sensor. Sensors. Actuat. B-Chem. 2021, 342, 129949.

30. Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 2019, 11, 22664-84.

31. Ji, H.; Zeng, W.; Li, Y. Assembly of 2D nanosheets into flower-like MoO3: new insight into the petal thickness affect on gas-sensing properties. Mater. Res. Bull. 2019, 118, 110476.

32. Kim, H.; Lee, J. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors. Actuat. B-Chem. 2014, 192, 607-27.

33. Zhang, C.; Zhang, S.; Yang, Y.; Yu, H.; Dong, X. Highly sensitive H2S sensors based on metal-organic framework driven γ-Fe2O3 on reduced graphene oxide composites at room temperature. Sensors. Actuat. B-Chem. 2020, 325, 128804.

34. Wang, X.; Wang, Y.; Tian, F.; et al. From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. J. Phys. Chem. C. 2015, 119, 15963-76.

35. Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. Journal. of. Electroceramics. 2001, 7, 143-67.

36. Zhou, T.; Zhang, T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small. Methods. 2021, 5, e2100515.

37. Panigrahi, P. K.; Chandu, B.; Puvvada, N. Recent advances in nanostructured materials for application as gas sensors. ACS. Omega. 2024, 9, 3092-122.

38. Kaur, N. Nickel oxide nanostructures for gas sensing: recent advances, challenges, and future perspectives. ACS. Sens. 2025, 10, 1641-74.

39. Wang, M.; Hou, T.; Shen, Z.; Zhao, X.; Ji, H. MOF-derived Fe2O3: Phase control and effects of phase composition on gas sensing performance. Sensors. Actuat. B-Chem. 2019, 292, 171-9.

40. Ming, J.; Wu, Y.; Wang, L.; Yu, Y.; Zhao, F. CO2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe2O3 nanoparticles with high sensor property. J. Mater. Chem. 2011, 21, 17776.

41. He, J.; Rao, X.; Yang, C.; Wang, J.; Su, X.; Niu, C. Glucose-assisted synthesis of mesoporous maghemite nanoparticles with enhanced gas sensing properties. Sensors. Actuat. B-Chem. 2014, 201, 213-21.

42. Williams, D. E.; Henshaw, G. S.; Pratt, K. F. E.; Peat, R. Reaction-diffusion effects and systematic design of gas-sensitive resistors based on semiconducting oxides. J. Chem. Soc.,. Faraday. Trans. 1995, 91, 4299-307.

43. Lu, H.; Ma, W.; Gao, J.; Li, J. Diffusion-reaction theory for conductance response in metal oxide gas sensing thin films. Sensors. Actuat. B-Chem. 2000, 66, 228-31.

44. Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensors. Actuat. B-Chem. 2001, 80, 125-31.

45. Tonezzer, M.; Izidoro, S. C.; Moraes, J. P. A.; Dang, L. T. T. Improved gas selectivity based on carbon modified SnO2 Nanowires. Front. Mater. 2019, 6, 277.

46. Mondal, B.; Gogoi, P. K. Nanoscale heterostructured materials based on metal oxides for a chemiresistive gas sensor. ACS. Appl. Electron. Mater. 2022, 4, 59-86.

47. Li, Y.; Luo, W.; Qin, N.; et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed. Engl. 2014, 53, 9035-40.

48. Liu, J.; Huang, H.; Zhao, H.; et al. Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macro-mesoporous ZnO nanostructures. ACS. Appl. Mater. Interfaces. 2016, 8, 8583-90.

49. Meng, L.; Li, Y.; Yang, M.; et al. Temperature-controlled resistive sensing of gaseous H2S or NO2 by using flower-like palladium-doped SnO2 nanomaterials. Mikrochim. Acta. 2020, 187, 297.

50. Motooka, M.; Uno, S. Improvement in limit of detection of enzymatic biogas sensor utilizing chromatography paper for breath analysis. Sensors. (Basel). 2018, 18, 440.

51. Malik, R.; Tomer, V. K.; Mishra, Y. K.; Lin, L. Functional gas sensing nanomaterials: a panoramic view. Appl. Phys. Rev. 2020, 7, 021301.

52. Marikutsa, A.; Rumyantseva, M.; Konstantinova, E. A.; Gaskov, A. The key role of active sites in the development of selective metal oxide sensor materials. Sensors. (Basel). 2021, 21, 2554.

53. Azad, A. M.; Akbar, S. A.; Mhaisalkar, S. G.; Birkefeld, L. D.; Goto, K. S. Solid‐state gas sensors: a review. J. Electrochem. Soc. 2019, 139, 3690-704.

54. Lee, Y.; Kwon, H.; Yoon, J. S.; Kim, J. K. Overcoming ineffective resistance modulation in p-type NiO gas sensor by nanoscale Schottky contacts. Nanotechnology 2019, 30, 115501.

55. Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors. J. Electroceram. 2009, 25, 11-9.

56. Li, T.; Cheng, L.; Gao, R.; et al. 2-methylimidazole assisted synthesis of waxberry-like CuO with oxygen vacancies for low-power Cl2 detection. Appl. Surf. Sci. 2024, 655, 159562.

57. Mihalcea, C. G.; Stefan, M.; Ghica, C.; et al. In-depth insight into the structural properties of nanoparticulate NiO for CO sensing. Appl. Surf. Sci. 2024, 651, 159252.

58. Yang, W.; Wang, J.; Zhao, Y.; He, J.; Meng, H. Mesopore engineering of Co3O4 nanoplates for enhanced detection of toluene vapor. Chem. Phys. 2024, 579, 112185.

59. Jung, M. H.; Kwak, M.; Ahn, J.; Song, J. Y.; Kang, H.; Jung, H. T. Highly sensitive and selective acetylene CuO/ZnO heterostructure sensors through electrospinning at lean O2 concentration for transformer diagnosis. ACS. Sens. 2024, 9, 217-27.

60. Liu, D.; Pan, J.; Tang, J.; Liu, W.; Bai, S.; Luo, R. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids. 2019, 124, 36-43.

61. Majhi, S. M.; Navale, S. T.; Mirzaei, A.; Kim, H. W.; Kim, S. S. Strategies to boost chemiresistive sensing performance of In2O3-based gas sensors: an overview. Inorg. Chem. Front. 2023, 10, 3428-67.

62. Ma, J.; Xie, W.; Li, J.; et al. Micellar Nanoreactors enabled site-selective decoration of Pt nanoparticles functionalized mesoporous SiO2/WO(3-x) composites for improved CO sensing. Small 2023, 19, e2301011.

63. Chen, K.; Xie, W.; Deng, Y.; et al. Alkaloid precipitant reaction inspired controllable synthesis of mesoporous tungsten oxide spheres for biomarker sensing. ACS. Nano. 2023, 17, 15763-75.

64. Rothschild, A.; Komem, Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 2004, 95, 6374-80.

65. Righettoni, M.; Tricoli, A.; Pratsinis, S. Thermally Stable, Silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 2010, 22, 3152-7.

66. Yang, B.; Tran, T.; Milam-guerrero, J.; To, D. T.; Stahovich, T.; Myung, N. V. Enhancing gas sensing performance of tungsten trioxide (WO3) nanofibers through diameter and crystallinity control. Sens. Actuators. Rep. 2024, 7, 100182.

67. Nascimento, E. P.; Firmino, H. C.; Neves, G. A.; Menezes, R. R. A review of recent developments in tin dioxide nanostructured materials for gas sensors. Ceram. Int. 2022, 48, 7405-40.

68. Sun, Y. F.; Liu, S. B.; Meng, F. L.; et al. Metal oxide nanostructures and their gas sensing properties: a review. Sensors. (Basel). 2012, 12, 2610-31.

69. Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors. Actuat. B-Chem. 1991, 3, 147-55.

70. Deng, X.; Chen, K.; Tüysüz, H. Protocol for the Nanocasting method: preparation of ordered mesoporous metal oxides. Chem. Mater. 2016, 29, 40-52.

71. Zou, Y.; Zhou, X.; Zhu, Y.; Cheng, X.; Zhao, D.; Deng, Y. sp2-hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property. Acc. Chem. Res. 2019, 52, 714-25.

72. Li, X.; Wan, Z.; Hu, Q.; et al. Effect of doping on the morphology and dimethylamine gas sensing properties of hexagonal pine needle-like WO3 structures with highly exposed (100) facet. Appl. Surf. Sci. 2024, 651, 159258.

73. Du, W.; Si, W.; Du, W.; et al. Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. J. Alloys. Compd. 2020, 834, 155209.

74. Ma, J.; Ren, Y.; Zhou, X.; et al. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 2017, 28, 1705268.

75. He, J.; Cheng, Z.; Liu, Z.; et al. Epitaxial growth of Co3O4/In2O3 p-n heterostructure with rich oxygen vacancies for ultrahigh triethylamine sensing. Sensors. Actuat. B-Chem. 2024, 400, 134881.

76. Zhao, T.; Qiu, P.; Fan, Y.; et al. Hierarchical branched mesoporous TiO2-SnO2 nanocomposites with well-defined n-n heterojunctions for highly efficient ethanol sensing. Adv. Sci. (Weinh). 2019, 6, 1902008.

77. Alali, K. T.; Liu, J.; Moharram, D.; et al. Fabrication of electrospun Co3O4/CuO p-p heterojunctions nanotubes functionalized with HFIP for detecting chemical nerve agent under visible light irradiation. Sensors. Actuat. B-Chem. 2020, 314, 128076.

78. Zou, Y.; Zhou, X.; Ma, J.; Yang, X.; Deng, Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem. Soc. Rev. 2020, 49, 1173-208.

79. Rossinyol, E.; Prim, A.; Pellicer, E.; et al. Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv. Funct. Mater. 2007, 17, 1801-6.

80. Shi, Y.; Wan, Y.; Liu, R.; Tu, B.; Zhao, D. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 2007, 129, 9522-31.

81. Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew. Chem. Int. Ed. Engl. 2006, 45, 4467-71.

82. Shi, Y.; Meng, Y.; Chen, D.; et al. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Adv. Funct. Mater. 2006, 16, 561-7.

83. Xie, W.; Huang, X. Y.; Zhu, C.; et al. Synthesis of ordered mesoporous metal oxides by solvent evaporation-induced cooperative assembly. Nat. Protoc. 2025.

84. Zhang, Y.; Yang, Q.; Yang, X.; Deng, Y. One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Microporous. Mesoporous. Mater. 2018, 270, 75-81.

85. Lunkenbein, T.; Kamperman, M.; Li, Z.; et al. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. J. Am. Chem. Soc. 2012, 134, 12685-92.

86. Eckhardt, B.; Ortel, E.; Bernsmeier, D.; et al. Micelle-templated oxides and carbonates of zinc, cobalt, and aluminum and a generalized strategy for their synthesis. Chem. Mater. 2013, 25, 2749-58.

87. Fan, J.; Boettcher, S. W.; Stucky, G. D. Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem. Mater. 2006, 18, 6391-6.

88. Wei, J.; Ren, Y.; Luo, W.; et al. ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem. Mater. 2017, 29, 2211-7.

89. Xiao, X.; Liu, L.; Ma, J.; et al. Ordered Mesoporous Tin oxide semiconductors with large pores and crystallized walls for high-performance gas sensing. ACS. Appl. Mater. Interfaces. 2018, 10, 1871-80.

90. Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394-7.

91. Buonsanti, R.; Pick, T. E.; Krins, N.; Richardson, T. J.; Helms, B. A.; Milliron, D. J. Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. Nano. Lett. 2012, 12, 3872-7.

92. Zhou, X.; Ma, J.; Ren, Y.; Zou, Y.; Zhao, D.; Deng, Y. Bridging molecule assisted organic-inorganic interface coassembly to rationally construct metal oxide mesostructures. Chem. Mater. 2022, 34, 6824-34.

93. Rauda, I. E.; Buonsanti, R.; Saldarriaga-Lopez, L. C.; et al. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials. ACS. Nano. 2012, 6, 6386-99.

94. Song, D. P.; Li, C.; Li, W.; Watkins, J. J. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS. Nano. 2016, 10, 1216-23.

95. Yang, X.; Lu, P.; Yu, L.; et al. An efficient emulsion‐induced interface assembly approach for rational synthesis of mesoporous carbon spheres with versatile architectures. Adv. Funct. Mater. 2020, 30, 2002488.

96. Zhang, L.; Cui, T.; Cao, X.; et al. Inorganic-macroion-induced formation of bicontinuous block copolymer nanocomposites with enhanced conductivity and modulus. Angew. Chem. Int. Ed. Engl. 2017, 56, 9013-7.

97. Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222-8.

98. Zhang, J.; Deng, Y.; Gu, D.; et al. Ligand‐assisted assembly approach to synthesize large‐pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy. Mater. 2011, 1, 241-8.

99. Li, Y.; Zhou, X.; Luo, W.; et al. Pore Engineering of mesoporous tungsten oxides for ultrasensitive gas sensing. Adv. Mater. Inter. 2018, 6, 1801269.

100. Zhou, X.; Zou, Y.; Ma, J.; et al. Cementing mesoporous ZnO with silica for controllable and switchable gas sensing selectivity. Chem. Mater. 2019, 31, 8112-20.

101. Park, K. S.; Ni, Z.; Côté, A. P.; et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-91.

102. Shi, L.; Benetti, D.; Wei, Q.; Rosei, F. MOF-Derived In2O3/CuO p-n heterojunction photoanode incorporating graphene nanoribbons for solar hydrogen generation. Small 2023, 19, e2300606.

103. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-1.

104. Kong, L.; Yuan, Z.; Gao, H.; Meng, F. Recent progress of gas sensors based on metal oxide composites derived from bimetallic metal-organic frameworks. TrAC-Trend. Anall. Chem. 2023, 166, 117199.

105. Wang, Y.; Lü, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A. 2015, 3, 12796-803.

106. Jang, J. S.; Koo, W. T.; Kim, D. H.; Kim, I. D. In situ coupling of multidimensional MOFs for heterogeneous metal-oxide architectures: toward sensitive chemiresistors. ACS. Cent. Sci. 2018, 4, 929-37.

107. Li, Y.; Yue, L.; Yue, L.; et al. Metal-organic frameworks-derived hollow nanotube La2O3-In2O3 heterojunctions for enhanced TEA sensing at low temperature. Sensors. Actuat. B-Chem. 2023, 378, 133125.

108. Qin, C.; Wang, B.; Wu, N.; Han, C.; Wang, Y. General strategy to fabricate porous co-based bimetallic metal oxide nanosheets for high-performance CO sensing. ACS. Appl. Mater. Interfaces. 2021, 13, 26318-29.

109. Koo, W. T.; Choi, S. J.; Jang, J. S.; Kim, I. D. Metal-organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep. 2017, 7, 45074.

110. Okai Amu-Darko, J. N.; Hussain, S.; Zhang, X.; et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor. Chemosphere 2023, 314, 137670.

111. Ding, Y.; Zhuang, Q.; Guo, X.; et al. NiO-CuO hydrangeas-like composite derived from Ni/Cu bimetallic MOFs for sensitive detection of H2S at room temperature. Appl. Surf. Sci. 2023, 612, 155792.

112. Chen, Q.; Zhang, Y.; Ma, S.; et al. Multishelled NiO/NiCo2O4 hollow microspheres derived from bimetal-organic frameworks as high-performance sensing material for acetone detection. J. Hazard. Mater. 2021, 415, 125662.

113. Koo, W. T.; Choi, S. J.; Kim, S. J.; Jang, J. S.; Tuller, H. L.; Kim, I. D. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 2016, 138, 13431-7.

114. Koo, W. T.; Yu, S.; Choi, S. J.; Jang, J. S.; Cheong, J. Y.; Kim, I. D. Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS. Appl. Mater. Interfaces. 2017, 9, 8201-10.

115. Feng, Y.; Li, P.; Wei, J. Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coord. Chem. Rev. 2022, 468, 214649.

116. Wang, G.; Qin, J.; Zhou, X.; et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated inner architectures and superior sensing performance. Adv. Funct. Mater. 2018, 28, 1806144.

117. Wang, G.; Zhou, X.; Qin, J.; et al. General synthesis of mixed semiconducting metal oxide hollow spheres with tunable compositions for low-temperature chemiresistive sensing. ACS. Appl. Mater. Interfaces. 2019, 11, 35060-7.

118. Feng, B.; Wu, Y.; Ren, Y.; et al. Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sensors. Actuat. B-Chem. 2022, 356, 131358.

119. Wang, G.; Wang, K.; Liu, Z.; et al. Hollow multi-shelled NiO nanoreactor for nanoconfined catalytic degradation of organic pollutants via peroxydisulfate activation. Appl. Catal. B-Environ. 2023, 325, 122359.

120. Chen, Y.; Li, Y.; Feng, B.; Wu, Y.; Zhu, Y.; Wei, J. Self-templated synthesis of mesoporous Au-ZnO nanospheres for seafood freshness detection. Sensors. Actuat. B-Chem. 2022, 360, 131662.

121. Feng, B.; Wang, Z.; Feng, Y.; et al. Single-atom Au-functionalized mesoporous SnO2 nanospheres for ultrasensitive detection of listeria monocytogenes biomarker at low temperatures. ACS. Nano. 2024, 18, 22888-900.

122. Li, P.; Diao, L.; Liao, X.; Wang, Z.; Feng, Y.; Wei, J. Rapid and selective detection of trace hydrogen by mesoporous SnO2 anchored with Au-Pd dual-atom sensitizers. Nano. Lett. 2025, 25, 8243-50.

123. Zhou, J.; Lin, Z.; Ju, Y.; Rahim, M. A.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269-78.

124. Villa, K.; Murcia-lópez, S.; Morante, J. R.; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B-Environ. 2016, 187, 30-6.

125. Wei, D.; Jiang, W.; Gao, H.; et al. Facile synthesis of La-doped In2O3 hollow microspheres and enhanced hydrogen sulfide sensing characteristics. Sensors. Actuat. B-Chem. 2018, 276, 413-20.

126. Kaur, J.; Anand, K.; Kaur, A.; Singh, R. C. Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sensors. Actuat. B-Chem. 2018, 258, 1022-35.

127. Liu, Y.; Guo, R.; Yuan, K.; et al. Engineering pore walls of mesoporous tungsten oxides via Ce doping for the development of high-performance smart gas sensors. Chem. Mater. 2022, 34, 2321-32.

128. Zhao, Y.; Zou, X.; Chen, H.; Chu, X.; Li, G. Tailoring energy level and surface basicity of metal oxide semiconductors by rare-earth incorporation for high-performance formaldehyde detection. Inorg. Chem. Front. 2019, 6, 1767-74.

129. Bai, J.; Luo, Y.; Chen, C.; et al. Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection. Sensors. Actuat. B-Chem. 2020, 324, 128755.

130. Wang, L.; Ma, S.; Xu, X.; et al. Oxygen vacancy-based Tb-doped SnO2 nanotubes as an ultra-sensitive sensor for ethanol detection. S. Sensors. Actuat. B-Chem. 2021, 344, 130111.

131. Li, Z.; Wang, W.; Zhao, Z.; Liu, X.; Song, P. One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC. Adv. 2017, 7, 28366-72.

132. Yoon, J. W.; Kim, J. S.; Kim, T. H.; Hong, Y. J.; Kang, Y. C.; Lee, J. H. A New strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 Nanoclusters. Small 2016, 12, 4229-40.

133. Kwak, C. H.; Kim, T. H.; Jeong, S. Y.; Yoon, J. W.; Kim, J. S.; Lee, J. H. Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk-shell spheres for real-time breath analysis. ACS. Appl. Mater. Interfaces. 2018, 10, 18886-94.

134. Kim, J. S.; Na, C. W.; Kwak, C. H.; et al. Humidity-independent gas sensors Using Pr-Doped In2O3 macroporous spheres: role of Cyclic Pr3+/Pr4+ redox reactions in suppression of water-poisoning effect. ACS. Appl. Mater. Interfaces. 2019, 11, 25322-9.

135. Sukunta, J.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films. Sensors. Actuat. B-Chem. 2017, 242, 1095-107.

136. Sun, J.; Wang, Y.; Song, P.; Yang, Z.; Wang, Q. Metal-organic framework-derived Cr-doped hollow In2O3 nanoboxes with excellent gas-sensing performance toward ammonia. J. Alloys. Compd. 2021, 879, 160472.

137. Li, P.; Cao, C.; Shen, Q.; et al. Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sensors. Actuat. B-Chem. 2021, 339, 129886.

138. Qin, C.; Wang, B.; Wang, Y. Metal-organic frameworks-derived Mn-doped Co3O4 porous nanosheets and enhanced CO sensing performance. Sensors. Actuat. B-Chem. 2022, 351, 130943.

139. Wang, D.; Zhai, C.; Du, L.; Gu, K.; Zhang, M. Enhanced triethylamine sensing performance of metal-organic framework derived nest-type Fe-doped NiO nanostructure. Inorg. Chem. Front. 2020, 7, 1474-82.

140. Rong, Q.; Li, Y.; Hao, S.; et al. Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor. J. Mater. Chem. A. 2021, 9, 6529-37.

141. Chen, K.; Zhou, Y.; Jin, R.; et al. Gas sensor based on cobalt-doped 3D inverse opal SnO2 for air quality monitoring. Sensors. Actuat. B-Chem. 2022, 350, 130807.

142. Jin, Z.; Wang, C.; Wu, L.; et al. Fast responding and recovering of NO2 sensors based on Ni-doped In2O3 nanoparticles. Sensors. Actuat. B-Chem. 2023, 377, 133058.

143. Li, J.; Zheng, M.; Yang, M.; et al. Three-in-one Ni doped porous SnO2 nanorods sensor: controllable oxygen vacancies content, surface site activation and low power consumption for highly selective NO2 monitoring. Sensors. Actuat. B-Chem. 2023, 382, 133550.

144. Zhang, S.; Zhang, B.; Li, W.; et al. Electrospun copper-doped tungsten oxide nanowires for triethylamine gas sensing. Vacuum 2023, 215, 112377.

145. Wang, L.; Ma, S.; Li, J.; et al. Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection. Sensors. Actuat. B-Chem. 2021, 347, 130642.

146. Du, L.; Sun, H.; Liu, Y. Metal-organic framework-derived hierarchical flower-like Mo-doped Co3O4 for enhanced triethylamine sensing properties. J. Alloys. Compd. 2022, 900, 163470.

147. Raghu, A. V.; Karuppanan, K. K.; Pullithadathil, B. Controlled carbon doping in anatase TiO2(101) facets: superior trace-level ethanol gas sensor performance and adsorption kinetics. Adv. Mater. Inter. 2019, 6, 1801714.

148. Zhao, D.; Zhang, X.; Sui, L.; et al. C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis. Sensors. Actuat. B-Chem. 2020, 312, 127942.

149. Wang, M.; Li, Y.; Yao, B.; Zhai, K.; Li, Z.; Yao, H. Synthesis of three-dimensionally ordered macro/mesoporous C-doped WO3 materials: Effect of template sizes on gas sensing properties. Sensors. Actuat. B-Chem. 2019, 288, 656-66.

150. Mo, X.; Zhu, C.; Zhang, Z.; et al. Nitrogen-doped indium oxide electrochemical sensor for stable and selective NO2 detection. Adv. Mater. 2024, 36, e2409294.

151. Abbasi, A.; Jahanbin Sardroodi, J. N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci:. Nano. 2016, 3, 1153-64.

152. Wang, K.; Peng, T.; Wang, Z.; et al. Correlation between the H2 response and its oxidation over TiO2 and N doped TiO2 under UV irradiation induced by Fermi level. Appl. Catal. B-Environ. 2019, 250, 89-98.

153. Ren, Y.; Zou, Y.; Liu, Y.; et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203-11.

154. Ren, Y.; Xie, W.; Li, Y.; et al. Dynamic coassembly of amphiphilic block copolymer and polyoxometalates in dual solvent systems: an efficient approach to heteroatom-doped semiconductor metal oxides with controllable nanostructures. ACS. Cent. Sci. 2022, 8, 1196-208.

155. Güntner, A. T.; Righettoni, M.; Pratsinis, S. E. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sensors. Actuat. B-Chem. 2016, 223, 266-73.

156. Shuvo, S. N.; Ulloa Gomez, A. M.; Mishra, A.; Chen, W. Y.; Dongare, A. M.; Stanciu, L. A. Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS. Sens. 2020, 5, 2915-24.

157. Li, W.; He, L.; Bai, X.; et al. Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg. Chem. Front. 2020, 7, 2031-42.

158. Xu, K.; Tian, S.; Zhu, J.; et al. High selectivity of sulfur-doped SnO2 in NO2 detection at lower operating temperatures. Nanoscale 2018, 10, 20761-71.

159. Deng, Y.; Chen, K.; Xie, W.; et al. On-chip construction of hierarchically macro-/mesoporous cerium oxide/Pt gas sensitive film for ultrasensitive detection of trace oxygen. Interdiscip. Mater. 2025, 4, 585-98.

160. Li, J.; Xue, L.; Deng, Y.; et al. A regiospecific co-assembly method to functionalize ordered mesoporous metal oxides with customizable noble metal nanocrystals. ACS. Cent. Sci. 2024, 10, 2274-84.

161. Ren, Y.; Xie, W.; Li, Y.; et al. Noble metal nanoparticles decorated metal oxide semiconducting nanowire arrays interwoven into 3D mesoporous superstructures for low-temperature gas sensing. ACS. Cent. Sci. 2021, 7, 1885-97.

162. Wang, Y.; Liu, J.; Cui, X.; et al. NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sensors. Actuat. B-Chem. 2017, 238, 473-81.

163. Liu, B.; Zhang, L.; Luo, Y.; Gao, L.; Duan, G. The dehydrogenation of H-S Bond into sulfur species on supported Pd single atoms allows highly selective and sensitive hydrogen sulfide detection. Small 2021, 17, e2105643.

164. Kim, S. J.; Choi, S. J.; Jang, J. S.; et al. Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS. Nano. 2016, 10, 5891-9.

165. Park, S.; Lim, Y.; Oh, D.; et al. Steering selectivity in the detection of exhaled biomarkers over oxide nanofibers dispersed with noble metals. J. Mater. Chem. A. 2023, 11, 3535-45.

166. Sui, N.; Wei, X.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. Nanoscale bimetallic AuPt-functionalized metal oxide chemiresistors: Ppb-level and selective detection for ozone and acetone. ACS. Sens. 2022, 7, 2178-87.

167. Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors. Actuat. B-Chem. 2014, 204, 250-72.

168. Wang, C.; Du, L.; Xing, X.; et al. Radial ZnO nanorods decorating Co3O4 nanoparticles for highly selective and sensitive detection of the 3-hydroxy-2-butanone biomarker. Nanoscale 2022, 14, 482-91.

169. Xie, J.; Liu, X.; Jing, S.; Pang, C.; Liu, Q.; Zhang, J. Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection. ACS. Appl. Mater. Interfaces. 2021, 13, 39621-32.

170. Xiao, X.; Zhou, X.; Ma, J.; et al. Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO Composites. ACS. Appl. Mater. Interfaces. 2019, 11, 26268-76.

171. Shao, F.; Hoffmann, M.; Prades, J.; et al. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sensors. Actuat. B-Chem. 2013, 181, 130-5.

172. Jeong, H. M.; Kim, J. H.; Jeong, S. Y.; Kwak, C. H.; Lee, J. H. Co3O4-SnO2 hollow heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement. ACS. Appl. Mater. Interfaces. 2016, 8, 7877-83.

173. Woo, H. S.; Na, C. W.; Kim, I. D.; Lee, J. H. Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures. Nanotechnology 2012, 23, 245501.

174. Han, J.; Wang, T. Y.; Li, T. T.; Yu, H.; Yang, Y.; Dong, X. T. Enhanced NO gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating. Adv. Materials. Inter. 2017, 5, 1701167.

175. Bhuvaneshwari, S.; Gopalakrishnan, N. Effect of Fe doping on the NH3 sensing properties of CuO nanostructures. J. Mater. Sci:. Mater. Electron. 2019, 30, 6920-8.

176. Li, Z.; Li, H.; Wu, Z.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470-506.

177. Cao, Y.; He, Y.; Zou, X.; Li, G. Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sensors. Actuat. B-Chem. 2017, 252, 232-8.

178. Wang, C.; Li, Y.; Qiu, P.; et al. Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing. Chin. Chem. Lett. 2020, 31, 1119-23.

179. Zhang, H.; Guo, S.; Zheng, W.; et al. Facile engineering of metal-organic framework derived SnO2-ZnO composite based gas sensor toward superior acetone sensing performance. Chem. Eng. J. 2023, 469, 143927.

180. Gao, X.; Ouyang, Q.; Zhu, C.; Zhang, X.; Chen, Y. Porous MoO3/SnO2 nanoflakes with n-n junctions for sensing H2S. ACS. Appl. Nano. Mater. 2019, 2, 2418-25.

181. Wan, K.; Wang, D.; Wang, F.; et al. Hierarchical In2O3@SnO2 Core-shell nanofiber for high efficiency formaldehyde detection. ACS. Appl. Mater. Interfaces. 2019, 11, 45214-25.

182. Wang, T.; Zhang, S.; Yu, Q.; et al. 3D inverse opal nanostructured multilayer films of two-component heterostructure composites: a new-generation synthetic route and potential application as high-performance acetone detector. Sensors. Actuat. B-Chem. 2018, 276, 262-70.

183. Suh, J. M.; Sohn, W.; Shim, Y. S.; et al. p-p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS. Appl. Mater. Interfaces. 2018, 10, 1050-8.

184. Xu, H.; Zhang, J.; Rehman, A. U.; et al. Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl. Surf. Sci. 2017, 412, 230-7.

185. Hozák, P.; Vorokhta, M.; Khalakhan, I.; et al. New insight into the gas-sensing properties of CuOx nanowires by near-ambient pressure XPS. J. Phys. Chem. C. 2019, 123, 29739-49.

186. Gao, H.; Guo, J.; Li, Y.; et al. Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sensors. Actuat. B-Chem. 2019, 284, 305-15.

187. Zhang, S.; Li, Y.; Sun, G.; et al. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 2019, 497, 143811.

188. Li, X.; Tan, T.; Ji, W.; et al. Remarkably enhanced methane sensing performance at room temperature via constructing a self-assembled mulberry‐Like ZnO/SnO2 hierarchical structure. Energy. &. Environ. Mater. 2023, 7, e12624.

189. Yao, L.; Li, Y.; Ran, Y.; et al. Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas. J. Alloys. Compd. 2020, 826, 154063.

190. Li, X.; He, H.; Tan, T.; et al. Annealing effect on the methane sensing performance of Pt-SnO2/ZnO double layer sensor. Appl. Surf. Sci. 2023, 640, 158428.

191. Katoch, A.; Kim, J. H.; Kwon, Y. J.; Kim, H. W.; Kim, S. S. Bifunctional sensing mechanism of SnO2-ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas. ACS. Appl. Mater. Interfaces. 2015, 7, 11351-8.

192. Zhang, H.; Wei, W.; Tao, T.; et al. Hierarchical NiO/TiO2 heterojuntion-based conductometric hydrogen sensor with anti-CO-interference. Sensors. Actuat. B-Chem. 2023, 380, 133321.

193. Kim, J.; Mirzaei, A.; Kim, H. W.; Kim, S. S. Improving the hydrogen sensing properties of SnO2 nanowire-based conductometric sensors by Pd-decoration. Sensors. Actuat. B-Chem. 2019, 285, 358-67.

194. Meng, X.; Bi, M.; Gao, W. PdAg alloy modified SnO2 nanoparticles for ultrafast detection of hydrogen. Sensors. Actuat. B-Chem. 2023, 382, 133515.

195. Dhage, S. B.; Patil, V. L.; Patil, P. S.; Ryu, J.; Patil, D. R.; Malghe, Y. S. Synthesis and characterization of CuO-SnO2 nanocomposite for CO gas sensing application. Mater. Lett. 2021, 305, 130831.

196. Zhang, Y.; Wang, Y.; Zhu, L.; Zhang, R.; Cao, J. Enhanced CO sensing performance of WO3 nanorods with PtAg nanoparticles modification: a combined experimental and first-principle study. Vacuum 2021, 193, 110526.

197. Ma, J.; Li, Y.; Zhou, X.; et al. Au nanoparticles decorated mesoporous SiO2-WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature. Small 2020, 16, e2004772.

198. Lei, M.; Gao, M.; Yang, X.; et al. Size-controlled Au nanoparticles incorporating mesoporous ZnO for sensitive ethanol sensing. ACS. Appl. Mater. Interfaces. 2021, 13, 51933-44.

199. Song, Z.; Tang, W.; Chen, Z.; et al. Temperature-modulated selective detection of part-per-trillion NO2 using platinum nanocluster sensitized 3D metal oxide nanotube arrays. Small 2022, 18, e2203212.

200. Cao, P.; Cai, Y.; Pawar, D.; et al. Au@ZnO/rGO nanocomposite-based ultra-low detection limit highly sensitive and selective NO2 gas sensor. J. Mater. Chem. C. 2022, 10, 4295-305.

201. Park, S.; Jeon, S.; Kim, H.; et al. Imparting metal oxides with high sensitivity toward light-activated NO2 detection via tailored interfacial chemistry. Adv. Funct. Mater. 2023, 33, 2214008.

202. Li, X. Y.; Sun, G. T.; Fan, F.; et al. Au25 nanoclusters incorporating three-dimensionally ordered macroporous In2O3 for highly sensitive and selective formaldehyde sensing. ACS. Appl. Mater. Interfaces. 2022, 14, 564-73.

203. Hu, L.; Jia, F.; Wang, S.; et al. The nano-composite of Co-doped g-C3N4 and ZnO sensors for the rapid detection of BTEX gases: stability studies and gas sensing mechanism. J. Mater. Sci. 2020, 56, 5041-52.

204. Cao, Z.; Ge, Y.; Wang, W.; et al. Chemical discrimination of benzene series and molecular recognition of the sensing process over Ti-Doped Co3O4. ACS. Sens. 2022, 7, 1757-65.

205. Moon, Y. K.; Jeong, S. Y.; Jo, Y. M.; Jo, Y. K.; Kang, Y. C.; Lee, J. H. Highly Selective detection of benzene and discrimination of volatile aromatic compounds using oxide chemiresistors with tunable Rh-TiO2 catalytic overlayers. Adv. Sci. (Weinh). 2021, 8, 2004078.

206. Wang, D.; Yin, Y.; Xu, P.; et al. The catalytic-induced sensing effect of triangular CeO2 nanoflakes for enhanced BTEX vapor detection with conventional ZnO gas sensors. J. Mater. Chem. A. 2020, 8, 11188-94.

207. Zhou, S.; Lu, Q.; Chen, M.; et al. Platinum-supported cerium-doped indium oxide for highly sensitive triethylamine gas sensing with good antihumidity. ACS. Appl. Mater. Interfaces. 2020, 12, 42962-70.

208. Zeng, J.; Rong, Q.; Xiao, B.; et al. Single-atom silver loaded on tungsten oxide with oxygen vacancies for high performance triethylamine gas sensors. J. Mater. Chem. A. 2021, 9, 8704-10.

209. Ma, J.; Li, Y.; Li, J.; et al. Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 2021, 32, 2107439.

210. Shao, S.; Yan, L.; Zhang, L.; et al. Data-driven exploration of terbium-doped tungsten oxide for ultra-precise detection of 3H-2B: implications for gas sensor applications. Chem. Eng. J. 2024, 487, 149680.

211. Yang, X.; Shi, Y.; Xie, K.; Fang, S.; Zhang, Y.; Deng, Y. Cocrystallization enabled spatial self-confinement approach to synthesize crystalline porous metal oxide nanosheets for gas sensing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207816.

212. Wang, D.; Deng, L.; Cai, H.; et al. Bimetallic PtCu nanocrystal sensitization WO3 hollow spheres for highly efficient 3-hydroxy-2-butanone biomarker detection. ACS. Appl. Mater. Interfaces. 2020, 12, 18904-12.

213. Xie, S.; Zhao, C.; Shen, J.; et al. Hierarchical flower-like WO3 nanospheres decorated with bimetallic au and pd for highly sensitive and selective detection of 3-hydroxy-2-butanone biomarker. ACS. Sens. 2023, 8, 728-38.

214. Yang, T.; Zhang, X.; Shiu, B.; Lou, C.; Lin, J.; Li, T. Wearable smart yarn sensor based on ZnO/SnO2 heterojunction for ammonia detecting. J. Mater. Sci. 2022, 57, 21946-59.

215. Ajjaq, A.; Bulut, F.; Ozturk, O.; Acar, S. Advanced NH3 detection by 1D nanostructured La:ZnO sensors with novel intrinsic p-n shifting and ultrahigh baseline stability. ACS. Sens. 2024, 9, 895-911.

216. Wang, Y.; Zhang, S.; Huang, C.; et al. Mesoporous WO3 modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton. Trans. 2021, 50, 970-8.

217. Shen, J.; Xu, S.; Zhao, C.; et al. Bimetallic Au@Pt nanocrystal sensitization mesoporous α-Fe2O3 hollow nanocubes for highly sensitive and rapid detection of fish freshness at low temperature. ACS. Appl. Mater. Interfaces. 2021, 13, 57597-608.

218. Kim, J.; Kim, K. B.; Li, H.; et al. Pure and Pr-doped Ce4W9O33 with superior hydroxyl scavenging ability: humidity-independent oxide chemiresistors. J. Mater. Chem. A. 2021, 9, 16359-69.

219. Meng, D.; Qiao, T.; Wang, G.; et al. NiO-functionalized In2O3 flower-like structures with enhanced trimethylamine gas sensing performance. Appl. Surf. Sci. 2022, 577, 151877.

220. Yuan, K.; Wang, C. Y.; Zhu, L. Y.; et al. Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS. Appl. Mater. Interfaces. 2020, 12, 14095-104.

221. Verma, A.; Yadav, B. C. Development and integration of a hierarchical Pd/WO3 acetone-sensing device for real-time exhaled breath monitoring with disposable face mask. J. Hazard. Mater. 2024, 463, 132872.

222. Jeong, S. Y.; Moon, Y. K.; Kim, J. K.; et al. A General solution to mitigate water poisoning of oxide chemiresistors: bilayer sensors with Tb4O7 overlayer. Adv. Funct. Mater. 2020, 31, 2007895.

223. Lei, M.; Zhou, X.; Zou, Y.; et al. A facile construction of heterostructured ZnO/Co3O4 mesoporous spheres and superior acetone sensing performance. Chin. Chem. Lett. 2021, 32, 1998-2004.

224. Shin, H.; Ko, J.; Park, C.; et al. Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: a general approach. Adv. Funct. Mater. 2021, 32, 2110485.

225. Huang, W.; Ding, Q.; Wang, H.; et al. Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 2023, 14, 5221.

226. Shatalin, K.; Nuthanakanti, A.; Kaushik, A.; et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 2021, 372, 1169-75.

227. Yan, J.; Guo, X.; Zhu, Y.; Song, Z.; Lee, L. Y. S. Solution-processed metal doping of sub-3 nm SnO2 quantum wires for enhanced H2S sensing at low temperature. J. Mater. Chem. A. 2022, 10, 15657-64.

228. Choi, S.; Ku, K. H.; Kim, B. J.; Kim, I. Novel templating route using Pt infiltrated block copolymer microparticles for catalytic Pt functionalized macroporous WO3 nanofibers and its application in breath pattern recognition. ACS. Sens. 2016, 1, 1124-31.

229. Park, S. W.; Jeong, S. Y.; Moon, Y. K.; Kim, K.; Yoon, J. W.; Lee, J. H. Highly selective and sensitive detection of breath isoprene by tailored gas reforming: a synergistic combination of macroporous WO3 spheres and Au catalysts. ACS. Appl. Mater. Interfaces. 2022, 14, 11587-96.