REFERENCES
1. Lee WH, Lee CW, Cha GD, et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat Nanotechnol 2023;18:754-62.
2. Zhang Y, Huang X, Yeom J. A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nanomicro Lett 2019;11:11.
3. Sayed M, Ren B, Ali AM, et al. Solar light induced photocatalytic activation of peroxymonosulfate by ultra-thin Ti3+ self-doped
4. Zhao D, Wu X, Gu X, Liu J. Investigation into the degradation of air and runoff pollutants using nano g-C3N4 photocatalytic road surfaces. Constr Build Mater 2024;411:134553.
5. Liu J, Zhang Q, Tian X, et al. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem Eng J 2021;404:127146.
6. Barakat M. New trends in removing heavy metals from industrial wastewater. Arab J Chem 2011;4:361-77.
7. Zhang X, Wu F, Li G, et al. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiSx on crystalline CdS for expediting photocatalytic H2 evolution. Appl Catal B Environ 2024;342:123398.
8. Zhang L, Jiang Z, Guo J, et al. Deep insight into regulation mechanism of band distribution in phase junction CdS for enhanced photocatalytic H2 production. J Colloid Interface Sci 2024;669:146-56.
9. Gong E, Ali S, Hiragond CB, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci 2022;15:880-937.
10. Liang C, Niu H, Guo H, et al. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem Eng J 2021;406:126868.
11. Shi D, Zhang L, Cao Y. Band structure engineering of Pd, Rh, Cu-modified SrMoO4 for enhanced activity and selectivity in photocatalytic CO2 reduction to CH4. Appl Surf Sci 2024;648:158979.
12. Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem Rev 2022;122:13478-515.
13. Dong W, Zhou S, Ma Y, et al. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met 2023;42:1195-204.
14. Li R, Bian Y, Yang C, et al. Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO2 heterostructure. Rare Met 2024;43:1125-38.
15. Ma Y, Fang H, Chen R, et al. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare Met 2023;42:3993-4004.
16. Xiong J, Li X, Huang J, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B Environ 2020;266:118602.
17. Wu X, Yao X, Xie B, et al. Unraveling the atmospheric oxidation mechanism and kinetics of naphthalene: insights from theoretical exploration. Chemosphere 2024;352:141356.
18. Arce-Saldaña L, Soto G, Herrera JR, Simakov A, Flores UC. Compact device for in situ ultraviolet-visible spectrophotometric measurement of photocatalytic kinetics. Rev Sci Instrum 2023;94:085106.
19. Schnabel T, Dutschke M, Schuetz F, Hauser F, Springer C. Photocatalytic air purification of polycyclic aromatic hydrocarbons: application of a flow-through reactor, kinetic studies and degradation pathways. J Photochem Photobiol A Chem 2022;430:113993.
20. Guo Y, Dai Y, Wang Y, et al. Boosted visible-light-driven degradation over stable ternary heterojunction as a plasmonic photocatalyst: mechanism exploration, pathway and toxicity evaluation. J Colloid Interface Sci 2023;641:758-81.
21. Dhawan A, Sudhaik A, Raizada P, et al. BiFeO3-based Z scheme photocatalytic systems: advances, mechanism, and applications. J Ind Eng Chem 2023;117:1-20.
22. Hu Y, Chen J, Wei Z, He Q, Zhao Y. Recent advances and applications of machine learning in electrocatalysis. J Mater Inf 2023;3:18.
23. Humayun M, Ullah H, Cao J, et al. Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-scheme heterojunction. Nanomicro Lett 2019;12:7.
24. Liu J, Gao F, Wu L, et al. Size effect on oxygen vacancy formation and gaseous adsorption in ZnO nanocrystallites for gas sensors: a first principle calculation study. Appl Phys A 2020;126:3643.
25. Yang Y, Zeng G, Huang D, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl Catal B Environ 2020;272:118970.
26. Wang V, Tang G, Liu YC, et al. High-throughput computational screening of two-dimensional semiconductors. J Phys Chem Lett 2022;13:11581-94.
27. Fu C, Zhang K, Guan H, et al. Progressive prediction algorithm by multi-interval data sampling in multi-task learning for real-time gas identification. Sens Actuators B Chem 2024;418:136271.
28. Liu Y, Yang B, He H, Yang S, Duan X, Wang S. Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: a review. Sci Total Environ 2022;804:150215.
29. Lim L, Lynch R. A proposed photocatalytic reactor design for in situ groundwater applications. Appl Catal A Gen 2010;378:202-10.
30. Lam S, Sin J, Zeng H, et al. Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mater Sci Semicond Process 2021;123:105574.
31. zhang T, Maihemllti M, Okitsu K, Talifur D, Tursun Y, Abulizi A. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Appl Surf Sci 2021;556:149828.
32. Li X, Xiong J, Gao X, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J Alloys Compd 2019;802:196-209.
33. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:e1901997.
34. Xu Q, Jiang J, Wang X, Duan L, Guo H. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met 2023;42:1888-98.
35. Li W, Li J, Liu Z, et al. Fast charge transfer kinetics in Sv-ZnIn2S4/Sb2S3 S-scheme heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. Rare Met 2024;43:533-42.
36. Ali S, Ismail PM, Khan M, et al. Charge transfer in TiO2-based photocatalysis: fundamental mechanisms to material strategies. Nanoscale 2024;16:4352-77.
37. Yu W, Hu C, Bai L, Tian N, Zhang Y, Huang H. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 2022;104:107906.
38. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 2005;44:8269.
39. Nasr M, Eid C, Habchi R, Miele P, Bechelany M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 2018;11:3023-47.
40. Wu D, Liu X, Liu J, Akhtar A, Fu C. Hydrothermal synthesis of Z-scheme photocatalyst Zn2SnO4-g-C3N4 for efficient tetracycline antibiotic removal. Diam Relat Mater 2024;141:110572.
41. Li J, Li Y. Recent advances in the interface structure prediction for heteromaterial systems. J Mater Inf 2023;3:22.
42. Cai M, Tong X, Zhao H, et al. Regulating intragap states in colloidal quantum dots for universal photocatalytic hydrogen evolution. Appl Catal B Environ 2024;343:123572.
43. Mao L, Cai X, Zhu M. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met 2021;40:1067-76.
44. Yang J, Liang Y, Li K, Yang G, Yin S. One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Appl Catal B Environ 2019;250:17-30.
45. Liu J, Qu X, Zhang C, et al. High-yield aqueous synthesis of partial-oxidized black phosphorus as layered nanodot photocatalysts for efficient visible-light driven degradation of emerging organic contaminants. J Clean Prod 2022;377:134228.
46. Guo S, Ji Y, Li Y, et al. Amorphous quantum dots co-catalyst: defect level induced solar-to-hydrogen production. Appl Catal B Environ 2023;330:122583.
47. Ye S, Zhou X, Xu Y, et al. Photocatalytic performance of multi-walled carbon nanotube/BiVO4synthesized by electro-spinning process and its degradation mechanisms on oxytetracycline. Chem Eng J 2019;373:880-90.
48. Karpuraranjith M, Chen Y, Rajaboopathi S, et al. Three-dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. J Colloid Interface Sci 2022;605:613-23.
49. Hao X, Hu Z, Xiang D, Jin Z. Ultra-thin carbon coated amorphous N-doped CoP enhancing electron transfer for wide spectrum photocatalytic hydrogen evolution. Int J Hydrog Energy 2023;48:600-15.
50. Yang C, Li X, Li M, Liang G, Jin Z. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution. Chin J Catal 2024;56:88-103.
51. Lee CW, Lee BH, Park S, et al. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. Nat Mater 2024;23:552-9.
52. Chen R, Chen S, Wang L, Wang D. Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application. Adv Mater 2024;36:e2304713.
53. Li S, You C, Xue Q, et al. Carbon quantum dots and interfacial chemical bond synergistically modulated S-scheme Mn0.5Cd0.5S/BiOBr photocatalyst for efficient water purification. J Mater Sci Technol 2025;214:255-65.
54. Yang M, Zhu X, Zhu Z, et al. Atomic activation triggering selective photoreduction of CO2 to CH4 over NiAl-LDH/CeO2 heterojunction. Chem Eng J 2023;472:145071.
55. Wu Y, Zhu P, Li Y, Zhang L, Jin Z. In Situ derivatization of NiAl-LDH/NiS a p-n heterojunction for efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater 2022;5:8157-68.
56. Yang M, Wang P, Li Y, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl Catal B Environ 2022;306:121065.
57. Wang C, You C, Rong K, Shen C, Yang F, Li S. An S-scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Phys Chim Sin 2024;40:2307045.
58. Liu Z, Li Y, Jin Z. Mechanochemical preparation of graphdiyne (CnH2n-2) based Ni-doped MoS2 S-scheme heterojunctions with in situ XPS characterization for efficient hydrogen production†. J Mater Chem C 2023;11:9327-40.
59. Dong K, Shen C, Yan R, Liu Y, Zhuang C, Li S. Integration of plasmonic effect and S-scheme heterojunction into Ag/Ag3PO4/C3N5 photocatalyst for boosted photocatalytic levofloxacin degradation. Acta Phys Chim Sin 2024;40:2310013.
60. Laxmi V, Agarwal S, Khan S. Advanced nanoribbons in water purification: a comprehensive review. J Environ Manage 2024;370:122645.
61. Jo W, Kumar S, Isaacs MA, Lee AF, Karthikeyan S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl Catal B Environ 2017;201:159-68.
62. Wang Y, Wu X, Liu J, et al. Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J Environ Chem Eng 2022;10:107091.
63. Mouloua D, Lejeune M, Rajput NS, et al. One-step chemically vapor deposited hybrid 1T-MoS2/2H-MoS2 heterostructures towards methylene blue photodegradation. Ultrason Sonochem 2023;95:106381.
64. Yang K, Zhong S, Zhou X, et al. Controllable Al2O3 coating makes TiO2 photocatalysts active under visible light by pulsed chemical vapor deposition. Chem Eng Sci 2023;277:118792.
65. Ge L, Ke Y, Li X. Machine learning integrated photocatalysis: progress and challenges. Chem Commun 2023;59:5795-806.
66. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:80-5.
67. Steinmann SN, Wang Q, Seh ZW. How machine learning can accelerate electrocatalysis discovery and optimization. Mater Horiz 2023;10:393-406.
68. Javed MF, Shahab MZ, Asif U, et al. Evaluation of machine learning models for predicting TiO2 photocatalytic degradation of air contaminants. Sci Rep 2024;14:13688.
69. Subramanian Y, Gajendiran J, Veena R, et al. Structural, photoabsorption and photocatalytic characteristics of BiFeO3-WO3 nanocomposites: an attempt to validate the experimental data through SVM-based artificial intelligence (AI). J Electron Mater 2023;52:2421-31.
70. Ahmed F, Kang IS, Kim KH, et al. Drug repurposing for viral cancers: a paradigm of machine learning, deep learning, and virtual screening-based approaches. J Med Virol 2023;95:e28693.
71. Yadav A, Acosta CM, Dalpian GM, Malyi OI. First-principles investigations of 2D materials: challenges and best practices. Matter 2023;6:2711-34.
72. Liu J, Wu L, Gao F, Hong W, Jin G, Zhai Z. Size effects of vacancy formation and oxygen adsorption on gas- sensitive tin oxide semiconductor: a first principle study. CNANO 2021;17:327-37.
73. Gu Y, Gu Y, Tao Q, Wang X, Zhu Q, Ma J. Machine learning for prediction of CO2/N2/H2O selective adsorption and separation in metal-zeolites. J Mater Inf 2023;3:19.
74. Pu Y, Liu Y, Liu D, et al. First-principles screening visible-light active delafossite ABO2 structures for photocatalytic application. Int J Hydrog Energy 2018;43:17271-82.
75. Liu Y, Lu Y, Wang WY, et al. Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: a first-principles study. J Mater Inf 2023;3:17.
76. Xu L, Zeng J, Li Q, et al. Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles. Appl Surf Sci 2020;530:147181.
77. Liu J, Li W, Li H, et al. A novel detection method for sulfur content in ship fuel based on metal-doped tin oxide quantum dots as fluorescent sensor. Fuel 2024;357:129739.
78. Shen H, Ouyang T, Guo J, Mu M, Yin X. A perspective LDHs/Ti3C2O2 design by DFT calculation for photocatalytic reduction of CO2 to C2 organics. Appl Surf Sci 2023;609:155445.
79. Wang G, Dong X, Cheng M, et al. DFT predirected molecular engineering design of donor-acceptor structured g-C3N4 for efficient photocatalytic tetracycline abatement. Small 2024;20:e2311798.
80. Vu TV, Anh NTT, Hoat D, et al. Electronic, optical and photocatalytic properties of fully hydrogenated GeC monolayer. Physica E 2020;117:113857.
81. Zhao Y, Wang W, Li C, et al. Enhanced photocatalytic activity of nonmetal doped monolayer MoSe2 by hydrogen passivation: first-principles study. Appl Surf Sci 2018;456:133-9.
82. Tang C, Chen C, Zhang H, Zhang J, Li Z. Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Physica B 2020;583:412029.
83. Su K, Xu X, Lai G, et al. First-principles investigation of the elastic, photocatalytic and ferroelectric properties of LiNbO3-type LiSbO3 under high pressure. Mater Today Commun 2021;27:102406.
84. Dong S, Li Y, Zhang X, et al. Pt single-atom loaded on nonmetallic elements (C, N, P, S) doped ZrO2 in photocatalytic hydrogen evolution: first principles. Mater Des 2023;231:112068.
85. Gong M, Yin H, Lyu P, Sun L. Single transition metal atoms anchored on a two-dimensional polyimide covalent-organic framework as single-atom catalysts for photocatalytic CO2 reduction: a first-principles study. Catal Commun 2023;175:106604.
86. Zhu L, Qin C, Wang Y, Cao J. Single-atom Pt supported on non-metal doped WS2 for photocatalytic CO2 reduction: a first-principles study. Appl Surf Sci 2023;626:157252.
87. Liu J, Zhang H, Li Y, et al. Enhanced Vis-NIR light absorption and thickness effect of Mo-modified SnO2 thin films: a first principle calculation study. Results Phys 2021;23:103997.
88. Zhu Z, Tang X, Wang T, et al. Insight into the effect of co-doped to the photocatalytic performance and electronic structure of g-C3N4 by first principle. Appl Catal B Environ 2019;241:319-28.
89. Ren J, Zhang J, Tian B, et al. First-principles study of the electronic, optical adsorption, and photocatalytic water-splitting properties of a strain-tuned SiC/WS2 heterojunction. Int J Hydrog Energy 2024;87:554-65.
90. Zhang R, Jian W, Yang Z, Bai F. Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: a first-principle study. Chin Chem Lett 2020;31:2319-24.
91. Ga S, An N, Lee GY, Joo C, Kim J. Multidisciplinary high-throughput screening of metal-organic framework for ammonia-based green hydrogen production. Renew Sustain Energy Rev 2024;192:114275.
92. Mooraj S, Chen W. A review on high-throughput development of high-entropy alloys by combinatorial methods. J Mater Inf 2023;3:4.
93. Yang H, Che Y, Cooper AI, Chen L, Li X. Machine learning accelerated exploration of ternary organic heterojunction photocatalysts for sacrificial hydrogen evolution. J Am Chem Soc 2023;145:27038-44.
94. Sa B, Hu R, Zheng Z, et al. High-throughput computational screening and machine learning modeling of janus 2D III-VI van der Waals heterostructures for solar energy applications. Chem Mater 2022;34:6687-701.
95. Singh AK, Montoya JH, Gregoire JM, Persson KA. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat Commun 2019;10:443.
96. Wang Y, Brocks G, Er S. Data-driven discovery of intrinsic direct-gap 2D materials as potential photocatalysts for efficient water splitting. ACS Catal 2024;14:1336-50.
97. Côté P, Nikanjam A, Ahmed N, Humeniuk D, Khomh F. Data cleaning and machine learning: a systematic literature review. Autom Softw Eng 2024;31:453.
98. Ge C, Gao Y, Miao X, Yao B, Wang H. A hybrid data cleaning framework using markov logic networks. IEEE Trans Knowl Data Eng 2022;34:2048-62.
99. Bernhardt M, Castro DC, Tanno R, et al. Active label cleaning for improved dataset quality under resource constraints. Nat Commun 2022;13:1161.
100. Lima FT, Souza VM. A large comparison of normalization methods on time series. Big Data Res 2023;34:100407.
101. Chen S, Guo W. Auto-encoders in deep learning-a review with new perspectives. Math 2023;11:1777.
102. Li P, Pei Y, Li J. A comprehensive survey on design and application of autoencoder in deep learning. Appl Soft Comput 2023;138:110176.
103. Xie J, Sage M, Zhao YF. Feature selection and feature learning in machine learning applications for gas turbines: a review. Eng Appl Artif Intell 2023;117:105591.
104. Wang J, Xu P, Ji X, Li M, Lu W. Feature selection in machine learning for perovskite materials design and discovery. Materials 2023;16:3134.
105. Wang C, Wan Y, Yang S, et al. Revealing the untapped potential of photocatalytic overall water splitting in metal organic frameworks. Adv Funct Mater 2024;34:2313596.
106. Wan Y, Ramirez F, Zhang X, Nguyen T, Bazan GC, Lu G. Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications. npj Comput Mater 2021;7:541.
107. Baaloudj O, Nasrallah N, Bouallouche R, Kenfoud H, Khezami L, Assadi AA. High efficient Cefixime removal from water by the sillenite Bi12TiO20: photocatalytic mechanism and degradation pathway. J Clean Prod 2022;330:129934.
108. Parida VK, Srivastava SK, Chowdhury S, Gupta AK. Facile synthesis of 2D/0D Bi2O3/MnO2 Z-scheme heterojunction for enhanced visible light-assisted photocatalytic degradation of acetaminophen. Chem Eng J 2023;472:144969.
109. Li J, Liu X, Wang H, Sun Y, Dong F. Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning. Chin Chem Lett 2024;35:108596.
110. Fathinia M, Khataee A, Aber S, Naseri A. Development of kinetic models for photocatalytic ozonation of phenazopyridine on TiO2 nanoparticles thin film in a mixed semi-batch photoreactor. Appl Catal B Environ 2016;184:270-84.
111. Amani-ghadim A, Dorraji MS. Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Appl Catal B Environ 2015;163:539-46.
112. K C A, Rao CS, Nair V. Combination of ensemble machine learning models in photocatalytic studies using nano TiO2 - Lignin based biochar. Chemosphere 2024;352:141326.
113. Wang Y, Sorkun MC, Brocks G, Er S. ML-aided computational screening of 2D materials for photocatalytic water splitting. J Phys Chem Lett 2024;15:4983-91.
114. Rashtbari S, Dehghan G, Marefat A, Khataee S, Khataee A. Proficient sonophotocatalytic degradation of organic pollutants using
115. Li Z, Li H, Meng L. Model compression for deep neural networks: a survey. Computers 2023;12:60.
116. Fu C, Li H, Li W, et al. Rapid detection of trace sulfur content in ship fuel oil based on tin oxide quantum dot fluorescent sensors assisted by multi-column convolutional neural network. Microchem J 2024;205:111396.
117. Sethi S, Dhir A, Arora V. Photocatalysis based hydrogen production and antibiotic degradation prediction using neural networks. Reac Kinet Mech Cat 2023;136:3283-97.
118. Kakhki R, Zirjanizadeh S, Mohammadpoor M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: in time of artificial intelligence. J Mater Sci 2023;58:10555-75.
119. Isazawa T, Cole JM. How beneficial is pretraining on a narrow domain-specific corpus for information extraction about photocatalytic water splitting? J Chem Inf Model 2024;64:3205-12.
120. Aid L, Abbou MS, Gafour AR, et al. Data-augmenting self-attention network for predicting photocatalytic degradation efficiency: a study on TiO2/curcumin nanocomposites. Reac Kinet Mech Cat 2024;137:3499-516.
121. Li J, Shi H, Li Z, et al. Interaction of metal ions in high efficiency seawater hydrogen peroxide production by a carbon-based photocatalyst. Appl Catal B Environ 2024;343:123541.
122. Hayashi Y, Nagai Y, Pan Z, Katayama K. Convolutional neural network prediction of the photocurrent-voltage curve directly from scanning electron microscopy images†. J Mater Chem A 2023;11:22522-32.
123. Schmidt-Hieber J. The Kolmogorov-Arnold representation theorem revisited. Neural Netw 2021;137:119-26.
124. Wang C, Tan X, Zhu B, et al. Deep learning-assisted non-invasive pediatric tic disorder diagnosis using EEG features extracted by residual neural networks. J Radiat Res Appl Sci 2024;17:101151.
125. He H, Wang Y, Qi Y, Xu Z, Li Y, Wang Y. From prediction to design: recent advances in machine learning for the study of 2D materials. Nano Energy 2023;118:108965.
126. Tao Q, Lu T, Sheng Y, Li L, Lu W, Li M. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting. J Energy Chem 2021;60:351-9.
127. Huang M, Wang S, Zhu H. A comprehensive machine learning strategy for designing high-performance photoanode catalysts. J Mater Chem A 2023;11:21619-27.
128. Lin Z, Li Y, Haque SA, Ganose AM, Kafizas A. Insights from experiment and machine learning for enhanced TiO2 coated glazing for photocatalytic NOx remediation†. J Mater Chem A 2024;12:13281-98.
129. Tamtaji M, Guo X, Tyagi A, et al. Machine learning-aided design of gold core-shell nanocatalysts toward enhanced and selective photooxygenation. ACS Appl Mater Interfaces 2022;14:46471-80.
130. Miodyńska M, Mikolajczyk A, Mazierski P, et al. Lead-free bismuth-based perovskites coupled with g-C3N4: a machine learning based novel approach for visible light induced degradation of pollutants. Appl Surf Sci 2022;588:152921.
131. Chen F, Yang Y, Chen X. A first-principles and machine learning study on design of graphitic carbon nitride-based single-atom photocatalysts. ACS Appl Nano Mater 2024;7:11862-70.
132. Choudhary K, Garrity KF. InterMat: accelerating band offset prediction in semiconductor interfaces with DFT and deep learning. Digital Discov 2024;3:1365-77.
133. Guevarra D, Zhou L, Richter MH, et al. Materials structure-property factorization for identification of synergistic phase interactions in complex solar fuels photoanodes. npj Comput Mater 2022;8:747.
134. Jiang Z, Hu J, Samia A, Yu X. Predicting active sites in photocatalytic degradation process using an interpretable molecular-image combined convolutional neural network. Catalysts 2022;12:746.
135. Zhou Y, Wang X, Huang X, Deng H, Hu Y, Lu L. Predicting the photosynthetic ammonia on nanoporous cobalt zirconate via graph convolutional neural networks. Mol Catal 2022;529:112565.
136. Bonke SA, Trezza G, Bergamasco L, et al. Multi-variable multi-metric optimization of self-assembled photocatalytic CO2 reduction performance using machine learning algorithms. J Am Chem Soc 2024;146:15648-58.
137. Wang S, Mo P, Li D, Syed A. Intelligent algorithms enable photocatalyst design and performance prediction. Catalysts 2024;14:217.
138. Liu Y, Ge Q, Wang T, et al. Investigating the impact of pretreatment strategies on photocatalyst for accurate CO2RR productivity quantification: a machine learning approach. Chem Eng J 2023;473:145255.
139. Jaffari ZH, Abbas A, Lam SM, et al. Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. J Hazard Mater 2023;442:130031.
140. Özsoysal S, Oral B, Yıldırım R. Analysis of photocatalytic CO2 reduction over MOFs using machine learning. J Mater Chem A 2024;12:5748-59.
141. Yang Y, Zheng Y, Liu S, et al. Deep learning prediction of photocatalytic water splitting for hydrogen production under natural light based on experiments. Energy Convers Manage 2024;301:118007.
142. Navidpour AH, Hosseinzadeh A, Huang Z, Li D, Zhou JL. Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid. Catal Rev 2024;66:687-712.
143. Lira JO, Riella HG, Padoin N, Soares C. Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study. Chem Eng J 2022;431:133771.
144. Li X, Maffettone PM, Che Y, Liu T, Chen L, Cooper AI. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem Sci 2021;12:10742-54.
145. Parmar N, Srivastava JK. Process optimization and kinetics study for photocatalytic ciprofloxacin degradation using TiO2 nanoparticle: a comparative study of artificial neural network and surface response methodology. J Indian Chem Soc 2022;99:100584.
146. Malayeri M, Nasiri F, Haghighat F, Lee C. Optimization of photocatalytic oxidation reactor for air purifier design: application of artificial neural network and genetic algorithm. Chem Eng J 2023;462:142186.
147. Truong H, Cuong Nguyen X, Hur J. Recent advances in g-C3N4-based photocatalysis for water treatment: magnetic and floating photocatalysts, and applications of machine-learning techniques. J Environ Manage 2023;345:118895.
148. Saadetnejad D, Oral B, Can E, Yıldırım R. Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production. Int J Hydrog Energy 2022;47:19655-68.
149. Gordanshekan A, Arabian S, Solaimany Nazar AR, Farhadian M, Tangestaninejad S. A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of Cefixime: artificial neural network, degradation pathway, and toxicity estimation. Chem Eng J 2023;451:139067.
150. Anandhi G, Iyapparaja M. Photocatalytic degradation of drugs and dyes using a maching learning approach. RSC Adv 2024;14:9003-19.
151. Liu Q, Pan K, Zhu L, et al. Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2†. Green Chem 2023;25:8778-90.
152. Park H, Bentria ET, Rtimi S, Arredouani A, Bensmail H, El-mellouhi F. Accelerating the design of photocatalytic surfaces for antimicrobial application: machine learning based on a sparse dataset. Catalysts 2021;11:1001.
153. Kim CM, Jaffari ZH, Abbas A, Chowdhury MF, Cho KH. Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal. J Hazard Mater 2024;465:132995.
154. Biswas T, Singh AK. Excitonic effects in absorption spectra of carbon dioxide reduction photocatalysts. npj Comput Mater 2021;7:640.
155. Jeong H, Yun B, Na S, et al. Multimodal deep learning models incorporating the adsorption characteristics of the adsorbent for estimating the permeate flux in dynamic membranes. J Membr Sci 2024;709:123105.
156. Zhang Z, Yang Z, Zhao Z, Liu Y, Wang C, Xu W. Multimodal deep-learning framework for accurate prediction of wettability evolution of laser-textured surfaces. ACS Appl Mater Interfaces 2023;Online ahead of print.
157. Liang W, Huang J, Sun J, Zhang P, Li A. Multiscale modeling and simulation of surface-enhanced spectroscopy and plasmonic photocatalysis. WIREs Comput Mol Sci 2023;13:e1665.
158. Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 2020;10:14984-5007.
159. Gusarov S. Advances in computational methods for modeling photocatalytic reactions: a review of recent developments. Materials 2024;17:2119.
160. Loh JYY, Wang A, Mohan A, et al. Leave no photon behind: artificial intelligence in multiscale physics of photocatalyst and photoreactor design. Adv Sci 2024;11:e2306604.
161. Oliveira GX, Kuhn S, Riella HG, Soares C, Padoin N. Combining computational fluid dynamics, photon fate simulation and machine learning to optimize continuous-flow photocatalytic systems. React Chem Eng 2023;8:2119-33.
162. Huang G, Guo Y, Chen Y, Nie Z. Application of machine learning in material synthesis and property prediction. Materials 2023;16:5977.