REFERENCES

1. Kong, F.; Ren, H. Advances in green energy, environment and carbon neutralization. Energies 2025, 18, 1016.

2. Zhang, Q.; Suresh, L.; Liang, Q.; et al. Emerging technologies for green energy conversion and storage. Adv. Sustain. Syst. 2021, 5, 2000152.

3. Wenten, I. G.; Khoiruddin, K.; Siagian, U. W. R. Green energy technologies: a key driver in carbon emission reduction. J. Eng. Technol. Sci. 2024, 56, 143-92.

4. Zhang, G.; Qu, Z.; Tao, W.; et al. Advancing next-generation proton-exchange membrane fuel cell development in multi-physics transfer. Joule 2024, 8, 45-63.

5. Cai, F.; Cai, S.; Tu, Z. Proton exchange membrane fuel cell (PEMFC) operation in high current density (HCD): problem, progress and perspective. Energy. Convers. Manag. 2024, 307, 118348.

6. Asghar, M. R.; Xu, Q. A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells. J. Polym. Res. 2024, 31, 3964.

7. Rehman Asghar, M.; Divya, K.; Su, H.; Xu, Q. Advancement of PVDF and its copolymer-based proton exchange membranes for direct methanol fuel cells: a review. Eur. Polym. J. 2024, 213, 113110.

8. Zunita, M.; Raizki, A.; Aditya, R.; Wenten, I. G. Proton exchange polyionic liquid-based membrane fuel cell applications. Results. Eng. 2022, 16, 100653.

9. Feng, M.; Ma, Y.; Chang, J.; et al. Sulfonated poly(arylene ether nitrile)-based composite membranes enhanced with Ca2+ bridged carbon nanotube-graphene oxide networks. J. Inorg. Organomet. Polym. 2022, 32, 2103-12.

10. Ou, Y.; Tsen, W.; Gong, C.; et al. Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes. Polym. Adv. Technol. 2018, 29, 612-22.

11. Bae, J. Control of microdomain orientation in block copolymer thin films by electric field for proton exchange membrane. Adv. Chem. Eng. Sci. 2014, 04, 95-102.

12. Elabd, Y. A.; Hickner, M. A. Block copolymers for fuel cells. Macromolecules 2011, 44, 1-11.

13. Borup, R.; Meyers, J.; Pivovar, B.; et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904-51.

14. Du, L.; Prabhakaran, V.; Xie, X.; Park, S.; Wang, Y.; Shao, Y. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions. Adv. Mater. 2021, 33, e1908232.

15. Li, Y.; Han, Y.; Zhan, J. Uniformity analysis in different flow-field configurations of proton exchange membrane fuel cell. J. Fuel. Cell. Sci. Technol. 2013, 10, 031003.

16. Jiao, K.; Xuan, J.; Du, Q.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361-9.

17. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.

18. Pourzare, K.; Zargar, M.; Farhadi, S.; Hassani Sadrabadi, M. M.; Mansourpanah, Y. Aminosilica-functionalized Co3O4 nanostructures in proton exchange mixed matrix membranes for enhanced separation efficiency of direct methanol fuel cells. ACS. Appl. Nano. Mater. 2023, 6, 296-304.

19. Bai, X.; Cao, L.; Ji, C.; et al. Ultra-high proton conductivity iHOF based on guanidinium arylphosphonate for proton exchange membrane fuel cells. Chem. Mater. 2023, 35, 3172-80.

20. Tsushima, S.; Teranishi, K.; Hirai, S. Experimental elucidation of proton conducting mechanism in a polymer electrolyte membrane of fuel cell by nuclei labeling MRI. ECS. Trans. 2006, 3, 91-6.

21. Ogawa, T.; Kamiguchi, K.; Tamaki, T.; Imai, H.; Yamaguchi, T. Differentiating Grotthuss proton conduction mechanisms by nuclear magnetic resonance spectroscopic analysis of frozen samples. Anal. Chem. 2014, 86, 9362-6.

22. Wang, M.; Wang, L.; Deng, N.; et al. Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes. Cellulose 2021, 28, 6567-85.

23. Wang, L.; Deng, N.; Wang, G.; Ju, J.; Cheng, B.; Kang, W. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction. ACS. Appl. Mater. Interfaces. 2019, 11, 39979-90.

24. Yao, Y.; Ji, L.; Lin, Z.; et al. Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. ACS. Appl. Mater. Interfaces. 2011, 3, 3732-7.

25. Li, J.; Wang, J.; Wu, Z.; Tao, S.; Jiang, D. Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks via confinement and activation. Angew. Chem. Int. Ed. 2021, 60, 12918-23.

26. Zhang, Y. P.; Yue, M. Z.; Chen, Y. Proton exchange membrane based on sulfonated polyimide for fuel cells: state-of-the-art and recent developments. Adv. Mat. Res. 2011, 239-42, 3032-8.

27. Chen, X.; Wang, T.; Shi, C.; et al. Preparation and characterization of phosphoric acid doped polyacrylamide/β-cyclodextrin high-temperature proton exchange membrane. Macro. Chem. Phys. 2022, 223, 2200006.

28. Wang, H.; Yang, G.; Li, S.; Shen, Q.; Li, Y.; Wang, R. Pore-scale modeling of liquid water transport in compressed gas diffusion layer of proton exchange membrane fuel cells considering fiber anisotropy. Membranes 2023, 13, 559.

29. Jiang, Z.; Meng, Y.; Jiang, Z.; Shi, Y. Preparation of highly sulfonated ultra-thin proton-exchange polymer membranes for proton exchange membrane fuel cells. Surf. Rev. Lett. 2009, 16, 297-302.

30. Zheng, W.; Wang, L.; Deng, F.; et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells. Nat. Commun. 2017, 8, 418.

31. Lin, H. D.; Yang, X. Y.; Sun, C. X. Characterization of multiblock sulfonated poly(arylene ether sulfone) as proton exchange membranes. Adv. Mat. Res. 2013, 805-6, 1321-4.

32. Lu, S.; Wang, D.; Jiang, S. P.; Xiang, Y.; Lu, J.; Zeng, J. HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells. Adv. Mater. 2010, 22, 971-6.

33. Shi, N.; Wang, G.; Wang, Q.; Wang, L.; Li, Q.; Yang, J. Acid doped branched poly(biphenyl pyridine) membranes for high temperature proton exchange membrane fuel cells and vanadium redox flow batteries. Chem. Eng. J. 2024, 489, 151121.

34. Lv, R.; Jin, S.; Li, L.; et al. The influence of comonomer structure on properties of poly(aromatic pyridine) copolymer membranes for HT-PEMFCs. J. Membr. Sci. 2024, 701, 122703.

35. Gunterman, H. P.; Kwong, A.; Gostick, J. T.; Kusoglu, A.; Weber, A. Z. Water uptake in PEMFC catalyst layers. ECS. Trans. 2011, 41, 647-50.

36. Ortiz Sainz De Aja, A.; Díaz Vejo, M.; Ortiz Uribe, I. Proton exchange membranes based on polymeric ionic liquids for fuel cell applications. ECS. Trans. 2016, 75, 589-96.

37. Huang, H.; Zhong, Z.; Li, J.; Li, H. A manganese-doped cerium-based metal-organic framework as a radical scavenger for proton exchange membrane fuel cells with superior stability. ACS. Appl. Energy. Mater. 2024, 7, 10804-14.

38. Pahon, E.; Jemei, S.; Steiner, N. Y.; Hissel, D. Effect of load cycling on the performance of fuel cell stacks; In 2019 IEEE Vehicle Power and Propulsion Conference (VPPC); 2019, pp. 1-4.

39. Zhang, X.; Yang, Y.; Zhang, X.; Guo, L.; Liu, H. Performance degradation of proton exchange membrane fuel cell caused by an accelerated stress test. Fuel. Cells. 2019, 19, 160-8.

40. Tsushima, S.; Kaneko, K.; Hirai, S. Two-stage degradation of PEMFC performance due to sulfur dioxide contamination. ECS. Trans. 2010, 33, 1645-52.

41. Chen, S.; Hao, M.; Hu, Y.; Liu, K.; Li, Y. Insight into the evolution of membrane chemical degradation in proton exchange membrane fuel cells: from theoretical analysis to model developing. J. Power. Sources. 2024, 599, 234238.

42. Tsuneda, T.; Singh, R. K.; Iiyama, A.; Miyatake, K. Theoretical investigation of the H2O2-induced degradation mechanism of hydrated nafion membrane via ether-linkage dissociation. ACS. Omega. 2017, 2, 4053-64.

43. Ghelichi, M.; Melchy, PÉ.; Eikerling, M. H. Radically coarse-grained approach to the modeling of chemical degradation in fuel cell ionomers. J. Phys. Chem. B. 2014, 118, 11375-86.

44. Liu, Y.; Du, M.; Li, Z.; Cheng, Y.; Shi, L. Molecular dynamics study on swelling and exfoliation properties of montmorillonite nanosheets for application as proton exchange membranes. ACS. Appl. Nano. Mater. 2023, 6, 2133-40.

45. Mader, J. A.; Benicewicz, B. C. Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecules 2010, 43, 6706-15.

46. Khoiruddin, K.; Kadja, G.; Wenten, I. Sustainable membranes with FNMs for energy generation and fuel cells. In: Membranes with functionalized nanomaterials; 2022. pp. 245-74.

47. Akli, K.; Khoiruddin, K.; Wenten, I. G. Preparation and characterization of heterogeneous PVC-silica proton exchange membrane. J. Membr. Sci. Res. 2016, 2, 141-6.

48. Vinothkannan, M.; Gikunoo, E. K.; Shanmugam, S. Toward extended durability and power output of high temperature proton exchange membrane fuel cells with Gd2Zr2O7-C3N4 composite membrane. Ionics 2025.

49. Wang, H.; Zhao, Y.; Shao, Z.; et al. Proton conduction of nafion hybrid membranes promoted by NH3-modified Zn-MOF with host-guest collaborative hydrogen bonds for H2/O2 fuel cell applications. ACS. Appl. Mater. Interfaces. 2021, 13, 7485-97.

50. Sulaiman, R. R. R.; Walvekar, R.; Wong, W. Y.; Khalid, M.; Pang, M. M. Proton conductivity enhancement at high temperature on polybenzimidazole membrane electrolyte with acid-functionalized graphene oxide fillers. Membranes 2022, 12, 344.

51. Ling, Z.; Wang, B.; Liu, Q.; et al. In-situ strategies for melamine-functionalized graphene oxide nanosheets-based nanocomposite proton exchange membranes in wide-temperature range applications. J. Colloid. Interface. Sci. 2025, 678, 388-99.

52. Zhai, S.; Lu, Z.; Ai, Y.; et al. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks. J. Power. Sources. 2023, 554, 232332.

53. Liu, J.; Wang, S.; Wang, L. Constructing high-performance proton transport channels in high-temperature proton exchange membranes by introducing triazole groups. ACS. Appl. Energy. Mater. 2021, 4, 10263-72.

54. Yang, J.; Lin, J.; Sun, S.; Li, X.; Liu, L.; Wang, C. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. J. Mater. Sci. Technol. 2023, 152, 75-85.

55. Wu, L.; Zhou, D.; Wang, H.; Pan, Q.; Ran, J.; Xu, T. Ionically cross-linked proton conducting membranes for fuel cells. Fuel. Cells. 2015, 15, 189-95.

56. Lan, Y.; Cheng, C.; Zhang, S.; et al. Plasma-induced styrene grafting onto the surface of polytetrafluoroethylene powder for proton exchange membrane application. Plasma. Sci. Technol. 2011, 13, 604-7.

57. Chowdury, M. S. K.; Park, Y. J.; Jeong, S. M.; Park, S. B.; Park, Y. Enhanced proton transfer in proton exchange membrane fuel cells via novel nanocomposite membrane incorporating (3-Mercaptopropyl)trimethoxysilane-graphene oxide and basic amino ligands: a synergistic acid-base approach. Electrochim. Acta. 2024, 507, 145197.

58. Zhao, Y.; Gao, Q.; Xu, X.; et al. Compromise mechanism of proton transfer in crown ether-based biomimetic proton exchange membranes: Insights from molecular dynamics simulations. J. Membr. Sci. 2025, 715, 123456.

59. Nasim, F.; Ali, H.; Nadeem, M. A. CoOx-CoP/nitrogen-doped tubular-carbon nanostructures supported over ceria nanorods as an efficient scavenger in the electrocatalytic oxygen reduction reaction. ACS. Appl. Eng. Mater. 2023, 1, 3379-88.

60. Liu, L.; Fu, Z.; Xing, Y.; et al. Double-layer ePTFE-reinforced membrane electrode assemblies prepared by a reverse membrane deposition process for high-performance and durable proton exchange membrane fuel cells. ACS. Appl. Mater. Interfaces. 2023, 15, 30281-93.

61. Zhang, L.; Liu, M.; Zhu, D.; et al. Double cross-linked 3D layered PBI proton exchange membranes for stable fuel cell performance above 200 °C. Nat. Commun. 2024, 15, 3409.

62. Kang, J.; Kim, J. Membrane electrode assembly degradation by dry/wet gas on a PEM fuel cell. Int. J. Hydrogen. Energy. 2010, 35, 13125-30.

63. Hong, K.; Li, S.; Zhu, K.; et al. Effects of relative humidification on durability of membrane electrode assembly of proton exchange membrane fuel cells. J. Electrochem. Soc. 2021, 168, 064507.

64. Farooqui, U.; Ahmad, A.; Hamid, N. Graphene oxide: a promising membrane material for fuel cells. Renew. Sustain. Energy. Rev. 2018, 82, 714-33.

65. Zhao, Z.; Liu, Z.; Zhang, A.; et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 2022, 17, 968-75.

66. Zhang, Z.; Yang, D.; Yao, H.; Chu, T.; Li, B. Investigation of performance degradation and control strategies of PEMFC under three typical operating conditions. J. Electrochem. Soc. 2024, 171, 054510.

67. Pang, X.; Shi, B.; Liu, Y.; et al. Confining phosphoric acid in quaternized COF channels for ultra-stable and fast anhydrous proton transport. Angew. Chem. Int. Ed. 2025, 64, e202423458.

68. Park, M. J.; Kim, S. Y. Ion transport in sulfonated polymers. J. Polym. Sci. B. Polym. Phys. 2013, 51, 481-93.

69. Wu, B.; Choo, H. L.; Ng, W. K.; Pang, M. M.; Yoon, L. W.; Wong, W. Y. Phosphoric acid electrolyte uptake and retention analysis on UiO-66-NH2 polybenzimidazole nanocomposite membranes. Fuel. Cells. 2025, 25, e202400045.

70. Liu, F.; Wang, S.; Chen, H.; et al. Cross-linkable polymeric ionic liquid improve phosphoric acid retention and long-term conductivity stability in polybenzimidazole based PEMs. ACS. Sustain. Chem. Eng. 2018, 6, 16352-62.

71. Xu, X. Q.; Cao, L. H.; Yang, Y.; Zhao, F.; Bai, X. T.; Zang, S. Q. Hybrid Nafion membranes of ionic hydrogen-bonded organic framework materials for proton conduction and PEMFC applications. ACS. Appl. Mater. Interfaces. 2021, 13, 56566-74.

72. Wang, R.; Li, M. Experiment and simulation studies on SPEEK PEM with different sulfonation degrees. IOP. Conf. Ser. Earth. Environ. Sci. 2017, 61, 012026.

73. Yang, S.; Liu, W.; Zhang, Y.; et al. A post-modified donor-acceptor covalent organic framework for enhanced photocatalytic H2 production and high proton transport. J. Mater. Chem. A. 2024, 12, 28161-9.

74. Tao, H.; Yang, K.; Wang, B.; et al. Numerical study of gas crossover effect on hydrogen-oxygen proton exchange membrane fuel cell. Int. J. Heat. Mass. Transfer. 2024, 234, 126060.

75. Xu, W.; Wang, Y.; Wu, Y.; et al. Sub-2-nm channels within covalent triazine framework enable fast proton-selective transport in flow battery membrane. Adv. Funct. Mater. 2023, 33, 2300138.

76. Liu, L.; Ma, Y.; Li, B.; et al. Continuous ultrathin zwitterionic covalent organic framework membrane via surface-initiated polymerization toward superior water retention. Small 2024, 20, e2308499.

77. Yang, X.; Zhao, L.; Goh, K.; Sui, X.; Meng, L.; Wang, Z. Ultra-high ion selectivity of a modified nafion composite membrane for vanadium redox flow battery by incorporation of phosphotungstic acid coupled UiO-66-NH2. ChemistrySelect 2019, 4, 4633-41.

78. Zhao, Y.; Li, X.; Wang, Z.; Xie, X.; Qian, W. Preparation of graft poly(arylene ether sulfone)s-based copolymer with enhanced phase-separated morphology as proton exchange membranes via atom transfer radical polymerization. Polymers 2019, 11, 1297.

79. Jeong, S.; Ohto, T.; Nishiuchi, T.; Nagata, Y.; Fujita, J. I.; Ito, Y. Suppression of methanol and formate crossover through sulfanilic-functionalized holey graphene as proton exchange membranes. Adv. Sci. 2023, 10, e2304082.

80. Liu, X.; Li, Y.; Xue, J.; et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat. Commun. 2019, 10, 842.

81. Chi, B.; Zhang, L.; Yang, X.; et al. Promoting ZIF-8-derived Fe-N-C oxygen reduction catalysts via Zr doping in proton exchange membrane fuel cells: durability and activity enhancements. ACS. Catal. 2023, 13, 4221-30.

82. Liu, N.; Bi, S.; Liu, J.; et al. PA-doped nanofiber composite proton exchange membranes with ultrahigh proton conductivity and methanol barrier performance for direct methanol fuel cells. Sep. Purif. Technol. 2025, 358, 130313.

83. Schonvogel, D.; Belack, J.; Vidakovic, J.; et al. Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes. J. Power. Sources. 2024, 591, 233835.

84. Miyake, J.; Miyatake, K. Fluorine-free sulfonated aromatic polymers as proton exchange membranes. Polym. J. 2017, 49, 487-95.

85. Wang, Y.; Wang, Y.; Su, B.; et al. Preparation and performance analysis of ILs@MoS2 modified polyimide proton exchange membrane. Mater. Sci. Eng. B. 2025, 317, 118163.

86. Lv, S.; Zhang, B.; Wang, L.; et al. Preparation and properties of superprotonic conductor-based mixed matrix proton exchange membranes for energy conversion and storage. J. Membr. Sci. 2025, 730, 124189.

87. Zhang, Q.; Dong, S.; Shao, P.; et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181-6.

88. Tang, H.; Geng, K.; Wu, L.; et al. Fuel cells with an operational range of -20 °C to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy. 2022, 7, 153-62.

89. Wang, X.; Zhao, S.; Wang, S.; et al. Facile preparation of high-performance sulfonated polyimide proton exchange membrane by doping nano carbon sulfonic acid. J. Membr. Sci. 2025, 717, 123605.

90. Li, Q.; Gao, W.; Zhang, N.; Gao, X.; Wu, D.; Che, Q. Preparation of high temperature proton exchange membranes with multilayered structures through alternate deposition of carbon dots@Metal organic framework and Sulfonated Poly(Ether Ketone). J. Membr. Sci. 2025, 713, 123306.

91. Gao, W.; Li, Q.; Gao, X.; Zhang, N.; Wu, D.; Che, Q. Preparation of high temperature proton exchange membrane through covalent organic framework doped polyvinylidene fluoride nanofibers. Int. J. Hydrogen. Energy. 2024, 91, 625-35.

92. Yagizatli, Y.; Ulas, B.; Sahin, A.; Ar, I. Preparation and characterization of SPEEK-PVA blend membrane additives with colloidal silica for proton exchange membrane fuel cell. J. Polym. Environ. 2024, 32, 4699-715.

93. Liu, J.; Ishitobi, H.; Nakagawa, N. Different functional groups cross-linked graphene oxide membranes for proton exchange membrane fuel cell. Int. J. Hydrogen. Energy. 2024, 85, 586-97.

94. Taner, T. A flow channel with Nafion membrane material design of PEM fuel cell. J. Therm. Eng. 2019, 5, 456-68.

95. Wen, Q.; Pan, S.; Li, Y.; et al. Janus gas diffusion layer for enhanced water management in proton exchange membrane fuel cells (PEMFCs). ACS. Energy. Lett. 2022, 7, 3900-9.

96. Sun, Y.; Lin, Y.; Wan, Z.; et al. Water management and performance enhancement in proton exchange membrane fuel cell through metal foam flow field with hierarchical pore structure. Chem. Eng. J. 2024, 494, 152944.

97. Liu, Y.; Bao, Z.; Chen, J.; Lv, F.; Jiao, K. Design of a partially narrowed flow channel with a sub-distribution zone for the water management of large-size proton exchange membrane fuel cells. Energy 2024, 310, 133292.

98. Chen, X.; Yang, C.; Sun, Y.; et al. Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell. Appl. Energy. 2022, 309, 118448.

99. Vu, H. N.; Truong Le Tri, D.; Nguyen, H. L.; Kim, Y.; Yu, S. Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system. Energy 2023, 278, 127696.

100. Pourrahmani, H.; Van Herle, J. The impacts of the gas diffusion layer contact angle on the water management of the proton exchange membrane fuel cells: three-dimensional simulation and optimization. Int. J. Energy. Res. 2022, 46, 16027-40.

101. Xiao, F.; Chen, T.; Zhang, J.; Zhang, S. Water management fault diagnosis for proton-exchange membrane fuel cells based on deep learning methods. Int. J. Hydrogen. Energy. 2023, 48, 28163-73.

102. Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A. Selection of proton exchange membrane fuel cell for transportation. Int. J. Hydrogen. Energy. 2021, 46, 30625-40.

103. Zhang, Y.; Song, Y.; Chen, D.; Jin, Q.; Chen, J.; Cao, Y. Preparation of phosphotungstic acid hybrid proton exchange membranes by constructing proton transport channels for direct methanol fuel cells. Polymer 2023, 265, 125589.

104. Tolj, I.; Penga, Z.; Bosnic, P.; Radica, G. Proton exchange membrane fuel cell flow field configuration: modelling and experimental verification. ECS. Trans. 2022, 108, 143-51.

105. Jin, H.; Zou, S.; Wen, Q.; et al. Performance improvement of air-breathing proton exchange membrane fuel cell (PEMFC) with a condensing-tower-like curved flow field. Chinese. Chem. Lett. 2023, 34, 107441.

106. Binyamin Lim, O. Numerical investigation of tapered flow field configuration to improve mass transport and performance of proton exchange membrane fuel cell. Int. J. Hydrogen. Energy. 2024, 50, 470-91.

107. Wan, Z.; Yan, H.; Sun, Y.; et al. Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field. Appl. Energy. 2023, 333, 120642.

108. Zhu, X.; Zhou, W.; Zhu, Z.; et al. Performance analysis of proton exchange membrane fuel cells with traveling-wave flow fields based on Grey-relational theory. Int. J. Hydrogen. Energy. 2023, 48, 740-56.

109. Rahmani, E.; Moradi, T.; Ghandehariun, S.; Naterer, G. F.; Ranjbar, A. Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field. Energy 2023, 264, 126115.

110. Ke, Y.; Zhang, B.; Yuan, W.; et al. Performance enhancement of proton exchange membrane fuel cells with bio-inspired gear-shaped flow channels. Chem. Eng. J. 2023, 474, 145870.

111. Wang, H.; Wang, Z.; Qu, Z.; Zhang, J. Deep-learning accelerating topology optimization of three-dimensional coolant channels for flow and heat transfer in a proton exchange membrane fuel cell. Appl. Energy. 2023, 352, 121889.

112. Asadi, M. R.; Ghasabehi, M.; Ghanbari, S.; Shams, M. The optimization of an innovative interdigitated flow field proton exchange membrane fuel cell by using artificial intelligence. Energy 2024, 290, 130131.

113. Li, N.; Wang, W.; Xu, R.; Zhang, J.; Xu, H. Design of a novel nautilus bionic flow field for proton exchange membrane fuel cell by analyzing performance. Int. J. Heat. Mass. Transfer. 2023, 200, 123517.

114. Chen, C.; Wang, C.; Zhang, Z. Numerical investigation of the water transport and performance of proton exchange membrane fuel cell with an imitating river flow field. Energy. Convers. Manag. 2023, 276, 116532.

115. Zuo, J.; Cadet, C.; Li, Z.; Bérenguer, C.; Outbib, R. A load allocation strategy for stochastically deteriorating multi-stack PEM fuel cells. In: Book of extended abstracts for the 32nd European safety and reliability conference. Research Publishing Services: Singapore; 2022, pp. 1204-11.

116. Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, L. F.; Compañ, V. Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers 2020, 12, 1861.

117. Mo, S.; Li, Z.; Chen, J.; et al. Hydrogen bond and dipole-dipole interaction enabling ultrastable, quick responding, and self-healing proton exchange membranes for fuel cells. ACS. Omega. 2024, 9, 26316-24.

118. Chen, J.; Bailey, J. J.; Britnell, L.; et al. The performance and durability of high-temperature proton exchange membrane fuel cells enhanced by single-layer graphene. Nano. Energy. 2022, 93, 106829.

119. Huang, H.; Yao, Q.; Zhang, X.; Wang, H. Microporous expanded polytetrafluoroethylene layer functionalized hydrophilic groups for excellent mechanical durability and superior performance in proton exchange membrane fuel cell. J. Power. Sources. 2022, 526, 231130.

120. Huang, M.; Liu, T.; Hou, K.; Sun, F.; Wu, C.; Guan, L. ZrO2 anchored core-shell Pt-Co alloy particles through direct pyrolysis of mixed Pt-Co-Zr salts for improving activity and durability in proton exchange membrane fuel cells. Int. J. Hydrogen. Energy. 2022, 47, 6679-90.

121. Xie, M.; Chu, T.; Wang, X.; et al. Study on durability of proton exchange membrane fuel cell stack based on mesoporous carbon supported platinum catalysts under dynamic cycles conditions. J. Power. Sources. 2023, 553, 232277.

122. Kwon, O.; Kim, J.; Yoo, H.; et al. Cathodic nanoporous CNT functional interlayer as a performance and durability boosting agent for proton exchange membrane fuel cells to operable at 120 °C. Carbon 2022, 199, 51-62.

123. Zhang, W.; Wang, Y. Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell. Ceram. Int. 2023, 49, 9371-81.

124. Tu, Z.; He, X.; Gao, W.; et al. Enhanced radical scavenging performance of Pt@CeO2 via strong metal-support interaction effect for improving durability of proton exchange membrane fuel cell. Int. J. Hydrogen. Energy. 2024, 50, 41-51.

125. Li, B.; Xie, M.; Wan, K.; et al. A high-durability graphitic black pearl supported Pt catalyst for a proton exchange membrane fuel cell stack. Membranes 2022, 12, 301.

126. Ahmed, H.; Musa, A. Performance investigation of direct oupling advanced alkaline electrolysis and PEMFC system. Solar. Energy. Sustain. Dev. J. 2021, 9.

127. Li, J.; Xi, Z.; Pan, Y. T.; et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926-32.

128. Wu, B.; Yang, H.; Li, L.; et al. Integrating PtCo intermetallic with highly graphitized carbon toward durable oxygen electroreduction in proton exchange membrane fuel cells. Adv. Mater. 2025, 37, e2500096.

129. Wu, B.; Xiao, J.; Li, L.; et al. Arranging electronic localization of PtCu nanoalloys to stimulate improved oxygen electroreduction for high-performance fuel cells. CCS. Chem. 2023, 5, 2545-56.

130. Baek, J.; Son, H.; Joo, S. W.; Kim, M.; Lee, G. Bimetallic zeolitic imidazole framework-derived sulfur-doped porous carbon as highly efficient catalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Appl. Surf. Sci. 2024, 642, 158609.

131. Fang, S.; Liu, G.; Li, M.; et al. Tailoring ionomer chemistry for improved oxygen transport in the cathode catalyst layer of proton exchange membrane fuel cells. ACS. Appl. Energy. Mater. 2023, 6, 3590-8.

132. Shin, J.; Son, M.; Kim, S.; Song, S. A.; Lee, D. H. Design of multi-layered gradient catalysts for efficient proton exchange membrane fuel cells. J. Power. Sources. 2023, 582, 233546.

133. He, W.; Tang, F.; Li, X.; Zhang, C.; Ming, P. Quantification and evolution on degradation mechanisms of proton exchange membrane fuel cell catalyst layer under dynamic testing conditions. Int. J. Hydrogen. Energy. 2023, 48, 18032-40.

134. Shin, S.; Lee, E.; Nam, J.; et al. Carbon-embedded Pt alloy cluster catalysts for proton exchange membrane fuel cells. Adv. Energy. Mater. 2024, 14, 2400599.

135. Li, Y.; Wu, Z.; Wang, C.; et al. Engineering triple-phase boundary in Pt Catalyst layers for proton exchange membrane fuel cells. Adv. Funct. Mater. 2024, 34, 2310428.

136. Yang, B.; Yu, H.; Jia, X.; et al. Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells. ACS. Appl. Mater. Interfaces. 2023, 15, 23316-27.

137. Wang, Q.; Wang, L.; Zhang, M.; et al. Preparation of novel membranes with multiple hydrogen bonding sites and π-conjugated structure for high temperature proton exchange membrane fuel cells. Chem. Commun. 2024, 60, 5318-21.

138. Shen, Y.; Liu, M.; Mao, Z.; et al. Triazine containing additional N sites to prepare branched poly(terphenyl piperidine) membranes for high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 2025, 731, 124238.

139. Sutradhar, S. C.; Bae, W.; Song, S.; et al. Synthesis and characterization of fluoro sulfonyl imide-based poly(benzoyl diphenyl benzene) membranes for proton exchange membrane fuel cells. Fuel 2025, 390, 134741.

140. Gao, Y.; Mu, T.; Hu, X.; Pang, Y.; Zhao, C. Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese. Chem. Lett. 2025, 36, 110763.

141. Yang, X.; Feng, Z.; Alshurafa, M.; et al. Durable proton exchange membrane based on polymers of intrinsic microporosity for fuel cells. Adv. Mater. 2025, 37, e2419534.

142. Liu, M.; Zhou, T.; Han, X.; et al. Polyoxometalates loaded metal-organic frameworks as functional proton conductors for high-temperature proton exchange membrane fuel cells with high performance. J. Membr. Sci. 2025, 724, 123981.

143. Ji, J.; Yang, T.; Zhang, W.; et al. Triazine-rich covalent organic framework composited proton exchange membranes for flexible operating temperature and enhanced long-term stability fuel cells. J. Power. Sources. 2025, 632, 236351.

144. Guan, X.; Wu, W.; Zhang, S.; et al. High hydrogen-bond density polymeric ionic liquid composited high temperature proton exchange membrane with exceptional long-term fuel cell performance. J. Membr. Sci. 2025, 717, 123523.

145. Yu, W.; Cui, Z.; Wang, Q.; et al. Ultra-high Prussian blue loading in SPEEK matrix fabricated by one-step electrostatic spraying as proton exchange membranes for fuel cell. J. Membr. Sci. 2025, 717, 123561.

146. Moehring, N. K.; Mansoor, Basha. A. B.; Chaturvedi, P.; et al. Overcoming the conductance versus crossover trade-off in state-of-the-art proton exchange fuel-cell membranes by incorporating atomically thin chemical vapor deposition graphene. Nano. Lett. 2025, 25, 1165-76.

147. Zeng, L.; Dong, D.; Lu, J.; et al. Hyperbranched interpenetrating hydrogen bond network (HIHBN) proton exchange membrane for fuel cells above 220 °C. Adv. Funct. Mater. 2025.

148. Ganesan, D.; Theerthagiri, S.; Yu, B.; et al. MoS2 nanosheet assisted poly vinyl alcohol cross-linked with carboxylated acryl-amido-2-methyl-1-propanesulfonic acid in medium temperature proton exchange membrane fuel cell application. Compos. Interfaces. 2025, 32, 251-72.

149. Huang, T.; Liu, X.; Ma, R.; et al. Polynorepinephrine-regulated filler sulfonation toward interfacial reformation and conductive promotion of nanocomposite proton exchange membrane. Chem. Eng. J. 2024, 484, 149582.

150. Zhang, X.; Ma, H.; Pei, T.; Zhang, R.; Liu, Y. Anchoring HPW by amino-modified MIL-101(Cr) to improve the properties of SPEEK in proton exchange membranes. J. Appl. Polym. Sci. 2023, 140, e53978.

151. Notter, D. A.; Kouravelou, K.; Karachalios, T.; Daletou, M. K.; Haberland, N. T. Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy. Environ. Sci. 2015, 8, 1969-85.

152. Slotyuk, L.; Part, F.; Schlegel, M.; Akkerman, F. Life cycle assessment of the domestic micro heat and power generation proton exchange membrane fuel cell in comparison with the gas condensing boiler plus electricity from the grid. Sustainability 2024, 16, 2348.

153. Arrigoni, A.; Arosio, V.; Basso, Peressut. A.; Latorrata, S.; Dotelli, G. Greenhouse gas implications of extending the service life of PEM fuel cells for automotive applications: a life cycle assessment. Clean. Technol. 2022, 4, 132-48.

154. Hwang, H.; Yoon, J.; Choi, W.; Barik, D. Mobile proton-exchange membrane fuel cell powered by diesel fuel: system simulation and life cycle analysis. Int. J. Energy. Res. 2023, 2023, 1-22.

155. Bargiacchi, E.; Campos-carriedo, F.; Iribarren, D.; Dufour, J.; Cigolotti, V. Social life cycle assessment of a proton exchange membrane fuel cell stack. E3S. Web. Conf. 2022, 334, 09001.

156. Wang, M.; Peng, F.; Zou, J.; et al. Manufacturing-induced irregularities of membrane electrode assemblies: Impacts on proton exchange membrane fuel cells’ performance and diagnosis. Renew. Sustain. Energy. Rev. 2025, 216, 115707.

157. Aminudin, M.; Kamarudin, S.; Lim, B.; Majilan, E.; Masdar, M.; Shaari, N. An overview: current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen. Energy. 2023, 48, 4371-88.

158. Silverman, T. J.; Huang, H. Solar energy technologies office multi-year program plan. Washington, DC: EERE Publication and Product Library; 2021.

159. Mohideen, M. M.; Liu, Y.; Ramakrishna, S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Appl. Energy. 2020, 257, 114027.

160. Drive, U. S. Fuel cell technical team roadmap. New York: US Drive Partnership; 2013, pp. 1-26.

161. Fan, L.; Tu, Z.; Chan, S. H. Recent development of hydrogen and fuel cell technologies: a review. Energy. Rep. 2021, 7, 8421-46.

162. Kampker, A.; Heimes, H.; Kehrer, M.; Hagedorn, S.; Reims, P.; Kaul, O. Fuel cell system production cost modeling and analysis. Energy. Rep. 2023, 9, 248-55.

163. Gao, Y.; Zhang, Z.; Zhong, S.; Daneshfar, R.; Ahmadi, M. H. Preparation and application of aromatic polymer proton exchange membrane with low-sulfonation degree. Int. J. Chem. Eng. 2020, 2020, 1-9.

164. Yen, V. T. K.; Hieu, D. T. T.; Hao, L. H.; et al. Characterization of graft-type polymer electrolyte membranes at low grafting degrees for fuel cells. Sci. Technol. Dev. J. 2023, 26, 2799-807.

165. Yadav, R.; Subhash, A.; Chemmenchery, N.; Kandasubramanian, B. Graphene and graphene oxide for fuel cell technology. Ind. Eng. Chem. Res. 2018, 57, 9333-50.

166. Li, Z. H.; Zeng, H.; Zeng, G.; et al. Multivariate synergistic flexible metal-organic frameworks with superproton conductivity for direct methanol fuel cells. Angew. Chem. Int. Ed. 2021, 60, 26577-81.

167. San FG, Dursun S, Yazici MS. Optimization of the PEMFC operating parameters for cathode in the presence of PtCo/CVD graphene using factorial design. Int. J. Energy. Res. 2019, 43, 4506-19.

168. Zhou, F.; Singdeo, D.; Kær, S. K. Investigation of the effect of humidity level of H2 on cell performance of a HT-PEM fuel cell. Fuel. Cells. 2019, 19, 2-9.

169. Kannan, V. M.; Karthikeyan, M.; Karthikeyan, A. P.; Naresh, S. Flow channel modification of PEM fuel cells: a review of approaches to enhance performance and durability. J. Eng. App. Sci. Technol. 2023, 5, 1-3.

170. Futter, G. A.; Latz, A.; Jahnke, T. Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: influence of pressure, relative humidity and cell voltage. J. Power. Sources. 2019, 410-1, 78-90.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/