REFERENCES

1. Crabtree, G. W.; Lewis, N. S. Solar energy conversion. Phys. Today. 2007, 60, 37-42.

2. Woolerton, T. W.; Sheard, S.; Chaudhary, Y. S.; Armstrong, F. A. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy. Environ. Sci. 2012, 5, 7470.

3. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89-99.

4. Windle, C. D.; Reisner, E. Heterogenised molecular catalysts for the reduction of CO2 to fuels. Chimia 2015, 69, 435.

5. Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 2014, 114, 1709-42.

6. Beer, C.; Reichstein, M.; Tomelleri, E.; et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 2010, 329, 834-8.

7. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38, 185-96.

8. Hong, Y. H.; Lee, Y.; Nam, W.; Fukuzumi, S. Hydrogen storage as liquid solar fuels. Inorg. Chem. Front. 2024, 11, 981-97.

9. Hong, Y. H.; Nilajakar, M.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Artificial photosynthesis for regioselective reduction of NAD(P)+ to NAD(P)H using water as an electron and proton source. J. Am. Chem. Soc. 2024, 146, 5152-61.

10. Lan, J.; Chen, R.; Duo, F.; Hu, M.; Lu, X. Visible-light photocatalytic reduction of Aryl halides as a source of Aryl radicals. Molecules 2022, 27, 5364.

11. Wang, C.; Liu, Y.; Dong, H.; Guo, M. Photo-induced thiocyanation of alkenes catalyzed by non-heme iron complexes: synthetic methodology and mechanistic insights. Chin. J. Chem. 2025, 43, 2471-8.

12. Kandy, M. M.; Mohammed, T. P.; George, A.; Sankaralingam, M. Biomimetic methodology as a sustainable tool for enhanced photocatalytic reduction of CO2. Catal. Today. 2025, 447, 115122.

13. Hong, Y. H.; Lee, Y.; Nam, W.; Fukuzumi, S. Multi-functional photocatalytic systems for solar fuel production. J. Mater. Chem. A. 2023, 11, 14614-29.

14. Seong, H.; Lee, D. Atomically precise metal nanoclusters for energy conversion. Bulletin. Korean. Chem. Soc. 2024, 45, 435-50.

15. Thangamuthu, M.; Ruan, Q.; Ohemeng, P. O.; et al. Polymer photoelectrodes for solar fuel production: progress and challenges. Chem. Rev. 2022, 122, 11778-829.

16. Reyes Cruz, E. A.; Nishiori, D.; Wadsworth, B. L.; et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 2022, 122, 16051-109.

17. Morikawa, T.; Sato, S.; Sekizawa, K.; Suzuki, T. M.; Arai, T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 2022, 55, 933-43.

18. Berardi, S.; Drouet, S.; Francàs, L.; et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501-19.

19. White, J. L.; Baruch, M. F.; Pander Iii, J. E.; et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888-935.

20. Su, X.; He, X.; Li, M.; Shan, B. Freestanding polymer photoelectrodes for solar fuel generation in photoelectrochemical cells. Chem. Mater. 2025, 37, 4552-70.

21. Handoko, A. D.; Li, K.; Tang, J. Recent progress in artificial photosynthesis: CO2 photoreduction to valuable chemicals in a heterogeneous system. Curr. Opin. Chem. Eng. 2013, 2, 200-6.

22. Bullock, R. M.; Das, A. K.; Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 2017, 23, 7626-41.

23. Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A. Chem. 1997, 108, 1-35.

24. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646-87.

25. Dai, L.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130-66.

26. Kale, V. N.; Borse, R. A.; Zhang, X.; Wang, Y. Decoding photoelectrochemical systems: molecular design and charge dynamics in energy conversion and storage. Acc. Chem. Res. 2025, 58, 3402-13.

27. Song, K.; Liu, H.; Chen, B.; et al. Toward efficient utilization of photogenerated charge carriers in photoelectrochemical systems: engineering strategies from the atomic level to configuration. Chem. Rev. 2024, 124, 13660-80.

28. Shi, Y.; Wang, Y.; Meng, N.; Liao, Y. Photothermal conversion porous organic polymers: design, synthesis, and applications. Small. Methods. 2024, 8, e2301554.

29. Karim, S.; Tanwar, N.; Das, S.; et al. Shaping the future of green hydrogen production: overcoming conventional challenges with molecular catalysts, immobilization, and scalable electrolyzers. ACS. Catal. 2025, 15, 1073-96.

30. Liu, X.; Inagaki, S.; Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. 2016, 55, 14924-50.

31. Kato, M.; Cardona, T.; Rutherford, A. W.; Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 2013, 135, 10610-3.

32. Choi, S.; Kim, Y.; Kim, S.; et al. Outer-sphere electron-transfer process of molecular donor-acceptor organic dye in the dye-sensitized photocatalytic system for CO2 reduction. ACS. Appl. Energy. Mater. 2022, 5, 10526-41.

33. Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631-701.

34. Ma, F.; Luo, Z. M.; Wang, J. W.; Ouyang, G. Highly efficient, noble-metal-free, fully aqueous CO2 photoreduction sensitized by a robust organic dye. J. Am. Chem. Soc. 2024, 146, 17773-83.

35. Cai, B.; Pavliuk, M. V.; Berggren, G.; Tian, H. Bio-hybrid photoelectrochemical catalysis for solar fuels and chemicals conversion. Nat. Commun. 2025, 16, 9131.

36. Dong, T.; Cheung, H. Y. M.; Man, J. H. K.; Zheng, Z.; Lo, I. M. C. Recent advances in oxidant-involved photoelectrochemical systems for sustainable wastewater treatment: mechanisms, applications, and perspectives. npj. Mater. Sustain. 2025, 3, 41.

37. Li, X.; Lin, S.; Hu, R.; et al. Recent progress in visible-light photocatalysts materials: synthesis, applications, challenges, and prospects. J. Opt. Photonics. Res. 2025.

38. Shizuno, M.; Kato, K.; Nishioka, S.; et al. Effects of a nanoparticulate TiO2 modifier on the visible-light CO2 reduction performance of a metal-complex/semiconductor hybrid photocatalyst. ACS. Appl. Energy. Mater. 2022, 5, 9479-86.

39. Orr, A. D.; Zhu, Z.; Durand, N.; et al. Immobilizing a Lehn-type catalyst with nitrocyclocondensation chemistries: CO2 reduction on silicon hybrid photoelectrodes. ACS. Appl. Mater. Interfaces. 2025, 17, 34741-9.

40. Kaur, R.; Dalpati, N.; Delcamp, J. H.; Farnum, B. H. Nickel-based two-electron redox shuttle for dye-sensitized solar cells in low light applications. ACS. Appl. Energy. Mater. 2024, 7, 3645-55.

41. Higashida, Y.; Takizawa, S. Y.; Yoshida, M.; Kato, M.; Kobayashi, A. Hydrogen production from hydrophobic ruthenium dye-sensitized TiO2 photocatalyst assisted by vesicle formation. ACS. Appl. Mater. Interfaces. 2023, 15, 27277-84.

42. Choi, S.; Choe, M. S.; Lee, D.; et al. Electron injection process of porphyrin dye into a heterogeneous TiO2/Re(I) photocatalyst. J. Phys. Chem. C. 2021, 125, 7625-36.

43. Bera, A.; Bimmermann, S.; Gerschel, P.; et al. Mechanistic promiscuity in cobalt-mediated CO2 reduction reaction: one- versus two-electron reduction process. Angew. Chem. Int. Ed. 2025, 64, e202503705.

44. Salamatian, A. A.; Alvarez-Hernandez, J. L.; Ramesh, K. B.; Leone, L.; Lombardi, A.; Bren, K. L. Electrocatalytic CO2 reduction by a cobalt porphyrin mini-enzyme. Chem. Sci. 2025, 16, 5707-16.

45. Bera, A.; Bimmermann, S.; Barman, D. J.; et al. Ligand non-innocence and proton channel promote cobalt-catalyzed electrochemical CO2 reduction with predominant CO selectivity. ChemRxiv 2024.

46. Alvarez-Hernandez, J. L.; Salamatian, A. A.; Han, J. W.; Bren, K. L. Potential- and buffer-dependent selectivity for the conversion of CO2 to CO by a cobalt porphyrin-peptide electrocatalyst in water. ACS. Catal. 2022, 12, 14689-97.

47. Wakabayashi, T.; Kametani, Y.; Tanahashi, E.; et al. Ferrocenyl PNNP ligands-controlled chromium complex-catalyzed photocatalytic reduction of CO2 to formic acid. J. Am. Chem. Soc. 2024, 146, 25963-75.

48. Jung, J.; Lee, K. W.; Sakamoto, N.; et al. Selective electroreduction of CO2 to formate by a heterogenized Ir complex using H2O as an electron/hydrogen source. EES. Catal. 2025, 3, 254-8.

49. Ishizuka, T.; Hosokawa, A.; Kawanishi, T.; Kotani, H.; Zhi, Y.; Kojima, T. Self-photosensitizing dinuclear ruthenium catalyst for CO2 reduction to CO. J. Am. Chem. Soc. 2023, 145, 23196-204.

50. Ishizuka, T.; Kojima, T. Oxidative and reductive manipulation of C1 resources by bio-inspired molecular catalysts to produce value-added chemicals. Acc. Chem. Res. 2024, 57, 2437-47.

51. Park, C.; Kwon, C.; Hong, Y. H. Designing biomimetic catalytic systems for CO2 reduction to formate using NAD(P)H. Inorg. Chem. Front. 2025, 12, 4544-68.

52. Karmalkar, D. G.; Lim, H.; Sundararajan, M.; et al. Synthesis, structure, and redox reactivity of Ni complexes bearing a redox and acid-base non-innocent ligand with NiII, NiIII, and NiIV formal oxidation states. J. Am. Chem. Soc. 2025, 147, 3981-93.

53. Zhang, X.; Jin, G.; Zhang, Q.; et al. Flavoenzyme-inspired reductive dehalogenation of α-Br and α-Cl carbonyl compounds with riboflavin tetraacetate as photocatalyst. Asian. J. Org. Chem. 2025, 14, e202400709.

54. Hong, Y. H.; Jung, J.; Nakagawa, T.; et al. Photodriven oxidation of water by plastoquinone analogs with a nonheme iron catalyst. J. Mater. Chem. A. 2019, 141, 6748-54.

55. Hong, Y. H.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Molecular photocatalytic water splitting by mimicking photosystems I and II. J. Am. Chem. Soc. 2022, 144, 695-700.

56. Rajeev, A.; Muthuramalingam, S.; Sankaralingam, M. Selective synthesis of cyclic alcohols from cycloalkanes using nickel(II) complexes of tetradentate amidate ligands. RSC. Adv. 2024, 14, 30440-51.

57. Bhardwaj, P.; Kulbir, .; Devi, T.; Kumar, P. Acid-induced conversion of nitrite to nitric oxide at the copper(II) center: a new catalytic pathway. Inorg. Chem. Front. 2023, 10, 7285-95.

58. Hong, Y. H.; Lee, Y.; Nam, W.; Fukuzumi, S. Reaction intermediates in artificial photosynthesis with molecular catalysts. ACS. Catal. 2023, 13, 308-41.

59. Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.; Basset, J. M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 2003, 42, 156-81.

60. Králik, M.; Koóš, P.; Markovič, M.; Lopatka, P. Research and developments of heterogeneous catalytic technologies. Molecules 2025, 30, 3279.

61. Johnson, E. K.; Musikanth, D. P.; Webber, C. K.; Gunnoe, T. B.; Zhang, S.; Machan, C. W. Polymer binder blends stabilize alkaline hydrogen evolution by heterogenized molecular phen-based cobalt electrocatalysts through coordination and environmental control. J. Am. Chem. Soc. 2025, 147, 10459-65.

62. Shafeeyan, M. S.; Houshmand, A.; Arami-niya, A.; Razaghizadeh, H.; Daud, W. M. A. W. Modification of activated carbon using nitration followed by reduction for carbon dioxide capture. Bull. Korean. Chem. Soc. 2015, 36, 533-8.

63. Kurisingal, J. F.; Choe, J. H.; Kim, H.; Youn, J.; Cheon, G.; Hong, C. S. Post-synthetic modifications of MOF -74 type frameworks for enhancing CO2 capture and moisture stability. Bull. Korean. Chem. Soc. 2024, 45, 675-88.

64. Sokol, K. P.; Mersch, D.; Hartmann, V.; et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy. Environ. Sci. 2016, 9, 3698-709.

65. Guerrero, J.; Schneider, N.; Dumoulin, F.; et al. Transparent porous ZnO|metal complex nanostructured materials: application to electrocatalytic CO2 reduction. ACS. Appl. Nano. Mater. 2023, 6, 10626-35.

66. Song, J. Q.; Lu, Y. L.; Yi, S. Z.; Zhang, J. H.; Pan, M.; Su, C. Y. Trinuclear Re(I)-coordinated organic cage as the supramolecular photocatalyst for visible-light-driven CO2 reduction. Inorg. Chem. 2023, 62, 12565-72.

67. Haake, M.; Aldakov, D.; Pérard, J.; et al. Impact of the surface microenvironment on the redox properties of a Co-based molecular cathode for selective aqueous electrochemical CO2-to-CO reduction. J. Am. Chem. Soc. 2024, 146, 15345-55.

68. Lee, D.; Molani, F.; Choe, M. S.; et al. Photocatalytic Conversion of CO2 to Formate/CO by an (η6-para-Cymene)Ru(II) half-metallocene catalyst: influence of additives and TiO2 immobilization on the catalytic mechanism and product selectivity. Inorg. Chem. 2024, 63, 11506-22.

69. Rotundo, L.; Ahmad, S.; Cappuccino, C.; et al. Fast catalysis at low overpotential: designing efficient dicationic Re(bpy2+)(CO)3I electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2024, 146, 24742-7.

70. Ishihara, K.; Nakada, A.; Suzuki, H.; et al. Molecular-level tailoring of energy structure in ternary conjugated polymers with a built-in Ru-complex catalyst for efficient CO2 reduction photocatalysis. J. Am. Chem. Soc. 2025, 147, 20759-69.

71. Liu, H.; Cody, C. C.; Jayworth, J. A.; Crabtree, R. H.; Brudvig, G. W. Surface-attached molecular catalysts on visible-light-absorbing semiconductors: opportunities and challenges for a stable hybrid water-splitting photoanode. ACS. Energy. Lett. 2020, 5, 3195-202.

72. Jiang, J.; Spies, J. A.; Swierk, J. R.; et al. Direct interfacial electron transfer from high-potential porphyrins into semiconductor surfaces: a comparison of linkers and anchoring groups. J. Phys. Chem. C. 2018, 122, 13529-39.

73. Liu, Y.; Jiang, Y.; Li, F.; Yu, F.; Jiang, W.; Xia, L. Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting. J. Mater. Chem. A. 2018, 6, 10761-8.

74. Matheu, R.; Moreno-Hernandez, I. A.; Sala, X.; et al. Photoelectrochemical behavior of a molecular Ru-based water-oxidation catalyst bound to TiO2-protected Si photoanodes. J. Am. Chem. Soc. 2017, 139, 11345-8.

75. Materna, K. L.; Crabtree, R. H.; Brudvig, G. W. Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 6099-110.

76. Queffelec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012, 112, 3777-807.

77. Paniagua, S. A.; Giordano, A. J.; Smith, O. L.; et al. Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem. Rev. 2016, 116, 7117-58.

78. Zhang, L.; Cole, J. M. Anchoring groups for dye-sensitized solar cells. ACS. Appl. Mater. Interfaces. 2015, 7, 3427-55.

79. Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.; Ito, S.; Imahori, H. Tropolone as a high-performance robust anchoring group for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2015, 127, 9180-4.

80. Lauinger, S. M.; Piercy, B. D.; Li, W.; et al. Stabilization of polyoxometalate water oxidation catalysts on hematite by atomic layer deposition. ACS. Appl. Mater. Interfaces. 2017, 9, 35048-56.

81. Wee, K. R.; Brennaman, M. K.; Alibabaei, L.; et al. Stabilization of ruthenium(II) polypyridyl chromophores on nanoparticle metal-oxide electrodes in water by hydrophobic PMMA overlayers. J. Am. Chem. Soc. 2014, 136, 13514-7.

82. Materna, K. L.; Rudshteyn, B.; Brennan, B. J.; et al. Heterogenized iridium water-oxidation catalyst from a silatrane precursor. ACS. Catal. 2016, 6, 5371-7.

83. Materna, K. L.; Brennan, B. J.; Brudvig, G. W. Silatranes for binding inorganic complexes to metal oxide surfaces. Dalton. Trans. 2015, 44, 20312-5.

84. Johnson, S. I.; Blakemore, J. D.; Brunschwig, B. S.; et al. Design of robust 2,2’-bipyridine ligand linkers for the stable immobilization of molecular catalysts on silicon(111) surfaces. Phys. Chem. Chem. Phys. 2021, 23, 9921-9.

85. Laurans, M.; Wells, J. A. L.; Ott, S. Immobilising molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO2 reduction. Dalton. Trans. 2021, 50, 10482-92.

86. Sanoja-Lopez, K. A.; Balu, A. M.; Carmona, H. P.; Hájek, M.; Luque, R.; Herrador, J. M. H. A practical guide to heterogeneous catalysis in hydrocarbon transformations. Chem. Asian. J. 2025, 20, e00635.

87. Zhang, L.; Gao, Y.; Ding, X. A PMMA overlayer improving the surface-bound stability of photoanode for water splitting. Electrochim. Acta. 2016, 207, 130-4.

88. O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-40.

89. Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541-88.

90. Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 2019, 119, 2752-875.

91. Duan, L.; Tong, L.; Xu, Y.; Sun, L. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells. Energy. Environ. Sci. 2011, 4, 3296-313.

92. Michaelos, T. K.; Shopov, D. Y.; Sinha, S. B.; et al. A pyridine alkoxide chelate ligand that promotes both unusually high oxidation states and water-oxidation catalysis. Acc. Chem. Res. 2017, 50, 952-9.

93. He, Y.; Thorne, J.; Wu, C.; et al. What limits the performance of Ta3N5 for solar water splitting? Chem 2016, 1, 640-55.

94. Zhao, Y. L.; Stoddart, J. F. Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 2009, 42, 1161-71.

95. Pérez, E. M.; Martín, N. π-π interactions in carbon nanostructures. Chem. Soc. Rev. 2015, 44, 6425-33.

96. de Groot, M. T.; Koper M. T. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. Phys. Chem. Chem. Phys. 2008, 10, 1023-31.

97. Smith, H. L.; Usala, R. L.; McQueen, E. W.; Goldsmith, J. I. Novel polyaromatic-terminated transition metal complexes for the functionalization of carbon surfaces. Langmuir 2010, 26, 3342-9.

98. Mann, J. A.; Dichtel, W. R. Improving the binding characteristics of tripodal compounds on single layer graphene. ACS. Nano. 2013, 7, 7193-9.

99. Barteau, M. A. Organic reactions at well-defined oxide surfaces. Chem. Rev. 1996, 96, 1413-30.

100. Vohs, J. M. Site requirements for the adsorption and reaction of oxygenates on metal oxide surfaces. Chem. Rev. 2013, 113, 4136-63.

101. Pujari, S. P.; Scheres, L.; Marcelis, A. T.; Zuilhof, H. Covalent surface modification of oxide surfaces. Angew. Chem. Int. Ed. 2014, 53, 6322-56.

102. Brennan, B. J.; Llansola Portolés, M. J.; Liddell, P. A.; Moore, T. A.; Moore, A. L.; Gust, D. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 2013, 15, 16605-14.

103. Brewster, T. P.; Konezny, S. J.; Sheehan, S. W.; et al. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg. Chem. 2013, 52, 6752-64.

104. Martini, L. A.; Moore, G. F.; Milot, R. L.; et al. Modular assembly of high-potential zinc porphyrin photosensitizers attached to TiO2 with a series of anchoring groups. J. Phys. Chem. C. 2013, 117, 14526-33.

105. Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano. Res. 2019, 12, 2093-125.

106. Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255-64.

107. Wu, Y.; Liang, Y.; Wang, H. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 2020, 54, 3149-59.

108. Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 2010, 132, 9672-80.

109. Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321-4.

110. Peterson, M. D.; Jensen, S. C.; Weinberg, D. J.; Weiss, E. A. Mechanisms for adsorption of methyl viologen on CdS quantum dots. ACS. Nano. 2014, 8, 2826-37.

111. Aldeek, F.; Hawkins, D.; Palomo, V.; et al. UV and sunlight driven photoligation of quantum dots: understanding the photochemical transformation of the ligands. J. Am. Chem. Soc. 2015, 137, 2704-14.

112. Stewart, M. P.; Maya, F.; Kosynkin, D. V.; et al. Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. J. Am. Chem. Soc. 2004, 126, 370-8.

113. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868-923.

114. Abe, T.; Tobinai, S.; Taira, N.; Chiba, J.; Itoh, T.; Nagai, K. Molecular hydrogen evolution by organic p/n bilayer film of phthalocyanine/fullerene in the entire visible-light energy region. J. Phys. Chem. C. 2011, 115, 7701-5.

115. Lattach, Y.; Fortage, J.; Deronzier, A.; Moutet, J. C. Polypyrrole-Ru(2,2’-bipyridine)32+/MoSx structured composite film as a photocathode for the hydrogen evolution reaction. ACS. Appl. Mater. Interfaces. 2015, 7, 4476-80.

116. Chen, Y.; Chen, H.; Tian, H. Immobilization of a cobalt catalyst on fullerene in molecular devices for water reduction. Chem. Commun. 2015, 51, 11508-11.

117. Jia, X.; Stewart-Jones, E.; Alvarez-Hernandez, J. L.; et al. Photoelectrochemical CO2 reduction to CO enabled by a molecular catalyst attached to high-surface-area porous silicon. J. Am. Chem. Soc. 2024, 146, 7998-8004.

118. Herino, R.; Bomchil, G.; Barla, K.; Bertrand, C.; Ginoux, J. L. Porosity and pore size distributions of porous silicon layers. J. Electrochem. Soc. 1987, 134, 1994-2000.

119. Northen, T. R.; Woo, H. K.; Northen, M. T.; et al. High surface area of porous silicon drives desorption of intact molecules. J. Am. Soc. Mass. Spectrom. 2007, 18, 1945-9.

120. Riikonen, J.; Salomäki, M.; van Wonderen, J.; et al. Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Langmuir 2012, 28, 10573-83.

121. Schmeltzer, J. M.; Porter, L. A.; Stewart, M. P.; Buriak, J. M. Hydride abstraction initiated hydrosilylation of terminal alkenes and alkynes on porous silicon. Langmuir 2002, 18, 2971-4.

122. Glass, J. A.; Wovchko, E. A.; Yates, J. T. Reaction of methanol with porous silicon. Surf. Sci. 1995, 338, 125-37.

123. Sun, W.; Qian, C.; He, L.; et al. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat. Commun. 2016, 7, 12553.

124. Qian, C.; Sun, W.; Hung, D. L. H.; et al. Catalytic CO2 reduction by palladium-decorated silicon-hydride nanosheets. Nat. Catal. 2019, 2, 46-54.

125. Sun, K.; Shen, S.; Liang, Y.; Burrows, P. E.; Mao, S. S.; Wang, D. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662-719.

126. Hong, Y. H.; Jia, X.; Stewart-Jones, E.; et al. Photoelectrocatalytic reduction of CO2 to formate using immobilized molecular manganese catalysts on oxidized porous silicon. Chem 2025, 11, 102462.

127. Reuillard, B.; Ly, K. H.; Rosser, T. E.; Kuehnel, M. F.; Zebger, I.; Reisner, E. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode. J. Am. Chem. Soc. 2017, 139, 14425-35.

128. Franco, F.; Cometto, C.; Nencini, L.; et al. Local proton source in electrocatalytic CO2 reduction with [Mn(bpy-R)(CO)3Br] complexes. Chemistry 2017, 23, 4782-93.

129. Chen, L.; Guo, Z.; Wei, X. G.; et al. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J. Am. Chem. Soc. 2015, 137, 10918-21.

130. Song, J.; Klein, E. L.; Neese, F.; Ye, S. The mechanism of homogeneous CO2 reduction by Ni(cyclam): product selectivity, concerted proton-electron transfer and C-O bond cleavage. Inorg. Chem. 2014, 53, 7500-7.

131. Sampson, M. D.; Nguyen, A. D.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J. Am. Chem. Soc. 2014, 136, 5460-71.

132. Bourrez, M.; Molton, F.; Chardon-noblat, S.; Deronzier, A. [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 2011, 123, 10077-80.

133. Stor, G. J.; Morrison, S. L.; Stufkens, D. J.; Oskam, A. The remarkable photochemistry of fac-XMn(CO)3(.alpha.-diimine) (X =Halide): formation of Mn2(CO)6(.alpha.-diimine)2 via the mer isomer and photocatalytic substitution of X- in the presence of PR3. Organometallics 1994, 13, 2641-50.

134. der Graaf, T.; Hofstra, R. M. J.; Schilder, P. G. M.; Rijkhoff, M.; Stufkens, D. J.; Van der Linden, J. G. M. Metal to ligand charge-transfer photochemistry of metal-metal-bonded complexes. 10. Photochemical and electrochemical study of the electron-transfer reactions of Mn(CO)3(.alpha.-diimine)(L) (L = N-, P-donor) radicals formed by irradiation of (CO)5MnMn(CO)3(.alpha.-diimine) complexes in the presence of L. Organometallics 1991, 10, 3668-79.

135. Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. NHC-containing manganese(I) electrocatalysts for the two-electron reduction of CO2. Angew. Chem. Int. Ed. 2014, 126, 5252-5.

136. Agarwal, J.; Stanton Iii, C. J.; Shaw, T. W.; et al. Exploring the effect of axial ligand substitution (X = Br, NCS, CN) on the photodecomposition and electrochemical activity of [MnX(N-C)(CO)3] complexes. Dalton. Trans. 2015, 44, 2122-31.

137. Vandezande, J. E.; Schaefer, H. F. CO2 reduction pathways on MnBr(N-C)(CO)3 electrocatalysts. Organometallics 2018, 37, 337-42.

138. Franco, F.; Pinto, M. F.; Royo, B.; Lloret-Fillol, J. A Highly Active N-Heterocyclic carbene manganese(I) complex for selective electrocatalytic CO2 reduction to CO. Angew. Chem. Int. Ed. 2018, 57, 4603-6.

139. Sampson, M. D.; Kubiak, C. P. Manganese Electrocatalysts with bulky bipyridine ligands: utilizing lewis acids to promote carbon dioxide reduction at low overpotentials. J. Am. Chem. Soc. 2016, 138, 1386-93.

140. Rønne, M. H.; Cho, D.; Madsen, M. R.; et al. Ligand-controlled product selectivity in electrochemical carbon dioxide reduction using manganese bipyridine catalysts. J. Am. Chem. Soc. 2020, 142, 4265-75.

141. Hartl, F.; Rosa, P.; Ricard, L.; Le Floch, P.; Záliš, S. Electronic transitions and bonding properties in a series of five-coordinate “16-electron” complexes [Mn(CO)3(L2)]- (L2= chelating redox-active π-donor ligand). Coord. Chem. Rev. 2007, 251, 557-76.

142. Grice, K. A.; Saucedo, C. Electrocatalytic reduction of CO2 by Group 6 M(CO)6 species without “non-innocent” ligands. Inorg. Chem. 2016, 55, 6240-6.

143. Riplinger, C.; Sampson, M. D.; Ritzmann, A. M.; Kubiak, C. P.; Carter, E. A. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. J. Am. Chem. Soc. 2014, 136, 16285-98.

144. Madsen, M. R.; Rønne, M. H.; Heuschen, M.; et al. Promoting selective generation of formic acid from CO2 using Mn(bpy)(CO)3Br as electrocatalyst and triethylamine/isopropanol as additives. J. Am. Chem. Soc. 2021, 143, 20491-500.

145. Carrington, S. J.; Chakraborty, I.; Mascharak, P. K. Rapid CO release from a Mn(I) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells. Chem. Commun. 2013, 49, 11254-6.

146. Gonzalez, M. A.; Carrington, S. J.; Fry, N. L.; Martinez, J. L.; Mascharak, P. K. Syntheses, structures, and properties of new manganese carbonyls as photoactive CO-releasing molecules: design strategies that lead to CO photolability in the visible region. Inorg. Chem. 2012, 51, 11930-40.

147. Gonzalez, M. A.; Yim, M. A.; Cheng, S.; Moyes, A.; Hobbs, A. J.; Mascharak, P. K. Manganese carbonyls bearing tripodal polypyridine ligands as photoactive carbon monoxide-releasing molecules. Inorg. Chem. 2012, 51, 601-8.

148. Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg. Chem. 2013, 52, 5470-8.

149. Ward, J. S.; Lynam, J. M.; Moir, J. W.; Sanin, D. E.; Mountford, A. P.; Fairlamb, I. J. A therapeutically viable photo-activated manganese-based CO-releasing molecule (photo-CO-RM). Dalton. Trans. 2012, 41, 10514-7.

150. Yempally, V.; Kyran, S. J.; Raju, R. K.; et al. Thermal and photochemical reactivity of manganese tricarbonyl and tetracarbonyl complexes with a bulky diazabutadiene ligand. Inorg. Chem. 2014, 53, 4081-8.

151. Cheung, P. L.; Machan, C. W.; Malkhasian, A. Y.; Agarwal, J.; Kubiak, C. P. Photocatalytic reduction of carbon dioxide to CO and HCO2H using fac-Mn(CN)(bpy)(CO)3. Inorg. Chem. 2016, 55, 3192-8.

152. Zhang, J.; Hu, C.; Wang, W.; Wang, H.; Bian, Z. Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer. Appl. Catal. A. 2016, 522, 145-51.

153. Bhugun, I.; Lexa, D.; Saveant, J. Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0) porphyrin associated with a weak brönsted acid cocatalyst. J. Am. Chem. Soc. 1994, 116, 5015-6.

154. Bhugun, I.; Lexa, D.; Savéant, J. Catalysis of the Electrochemical reduction of carbon dioxide by iron(0) porphyrins:  synergystic effect of weak brönsted acids. J. Am. Chem. Soc. 1996, 118, 1769-76.

155. Costentin, C.; Drouet, S.; Robert, M.; Savéant, J. M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 2012, 338, 90-4.

156. Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J. M. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J. Am. Chem. Soc. 1991, 113, 8455-66.

157. Costentin, C.; Drouet, S.; Passard, G.; Robert, M.; Savéant, J. M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 2013, 135, 9023-31.

158. Guo, Z.; Cheng, S.; Cometto, C.; et al. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J. Am. Chem. Soc. 2016, 138, 9413-6.

159. Cometto, C.; Chen, L.; Lo, P.; et al. Highly selective molecular catalysts for the CO2-to-CO electrochemical conversion at very low overpotential. Contrasting Fe vs Co quaterpyridine complexes upon mechanistic studies. ACS. Catal. 2018, 8, 3411-7.

160. Pun, S.; Chung, W.; Lam, K.; et al. Iron(i) complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline (H2dophen) as electrocatalysts for carbon dioxide reduction. X-Ray crystal structures of [Fe(dophen)Cl]2·2HCON(CH3)2 and [Fe(dophen)(N-MeIm)2]-ClO4 (N-MeIm = 1-methylimidazole). J. Chem. Soc. Dalton. Trans. 2002, 575-83.

161. Grodkowski, J.; Dhanasekaran, T.; Neta, P.; et al. Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2. J. Phys. Chem. A. 2000, 104, 11332-9.

162. Grodkowski, J.; Neta, P.; Fujita, E.; Mahammed, A.; Simkhovich, L.; Gross, Z. Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J. Phys. Chem. A. 2002, 106, 4772-8.

163. Rao, H.; Bonin, J.; Robert, M. Visible-light homogeneous photocatalytic conversion of CO2 into CO in aqueous solutions with an iron catalyst. ChemSusChem 2017, 10, 4447-50.

164. Rao, H.; Bonin, J.; Robert, M. Non-sensitized selective photochemical reduction of CO2 to CO under visible light with an iron molecular catalyst. Chem. Commun. 2017, 53, 2830-3.

165. Hiratsuka, K.; Takahashi, K.; Sasaki, H.; Toshima, S. Electrocatalytic behavior of tetrasulfonated metal phthalocyanines in the reduction of carbon dioxide. Chem. Lett. 1977, 6, 1137-40.

166. Ziessel, R.; Hawecker, J.; Lehn, J. Photogeneration of carbon monoxide and of hydrogen via simultaneous photochemical reduction of carbon dioxide and water by visible-light irradiation of organic solutions containing Tris(2,2’-bipyridine)ruthenium(II) and Cobalt(II) species as homogeneous catalysts. Helvetica. Chimica. Acta. 1986, 69, 1065-84.

167. Matsuoka, S.; Yamamoto, K.; Ogata, T.; et al. Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide. J. Am. Chem. Soc. 1993, 115, 601-9.

168. Sheng, H.; Frei, H. Direct observation by rapid-scan FT-IR spectroscopy of two-electron-reduced intermediate of tetraaza catalyst [CoIIN4H(MeCN)]2+ converting CO2 to CO. J. Am. Chem. Soc. 2016, 138, 9959-67.

169. Chan, S. L.; Lam, T. L.; Yang, C.; Yan, S. C.; Cheng, N. M. A robust and efficient cobalt molecular catalyst for CO2 reduction. Chem. Commun. 2015, 51, 7799-801.

170. Wang, X.; Goudy, V.; Genesio, G.; Maynadié, J.; Meyer, D.; Fontecave, M. Ruthenium-cobalt dinuclear complexes as photocatalysts for CO2 reduction. Chem. Commun. 2017, 53, 5040-3.

171. Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem. Int. Ed. 2017, 56, 738-43.

172. Wu, Y.; Rudshteyn, B.; Zhanaidarova, A.; et al. Electrode-ligand interactions dramatically enhance CO2 conversion to CO by the [Ni(cyclam)](PF6)2 catalyst. ACS. Catal. 2017, 7, 5282-8.

173. Froehlich, J. D.; Kubiak, C. P. The homogeneous reduction of CO2 by [Ni(cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J. Am. Chem. Soc. 2015, 137, 3565-73.

174. Sheng, M.; Jiang, N.; Gustafson, S.; You, B.; Ess, D. H.; Sun, Y. A nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O. Dalton. Trans. 2015, 44, 16247-50.

175. Therrien, J. A.; Wolf, M. O.; Patrick, B. O. Synthesis and comparison of nickel, palladium, and platinum bis(N-heterocyclic carbene) pincer complexes for electrocatalytic CO2 reduction. Dalton. Trans. 2018, 47, 1827-40.

176. Hong, D.; Tsukakoshi, Y.; Kotani, H.; Ishizuka, T.; Kojima, T. Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J. Am. Chem. Soc. 2017, 139, 6538-41.

177. Kimura, E.; Bu, X.; Shionoya, M.; Wada, S.; Maruyama, S. A new nickel(II) cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex covalently attached to Ru(Phen)32+ (Phen = 1,10-phenanthroline). A new candidate for the catalytic photoreduction of carbon dioxide. Inorg. Chem. 1992, 31, 4542-6.

178. Kimura, E.; Wada, S.; Shionoya, M.; Takahashi, T.; Litaka, Y. A novel cyclam-nickel(II) complex appended with a tris-(2,2’-bipyridine) ruthenium(II) complex (cyclam = 1,4,8,11-tetra-azacyclotetradecane). J. Chem. Soc. Chem. Commun. 1990.

179. Serna, P.; Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 2014, 47, 2612-20.

180. Copéret, C.; Comas-Vives, A.; Conley, M. P.; et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 2016, 116, 323-421.

181. Hübner, S.; de Vries, J. G.; Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 2016, 358, 3-25.

182. Witzke, R. J.; Chapovetsky, A.; Conley, M. P.; Kaphan, D. M.; Delferro, M. Nontraditional catalyst supports in surface organometallic chemistry. ACS. Catal. 2020, 10, 11822-40.

183. Fumagalli, F.; Bellani, S.; Schreier, M.; et al. Hybrid organic-inorganic H2 -evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting. J. Mater. Chem. A. 2016, 4, 2178-87.

184. Jia, X.; Nedzbala, H. S.; Bottum, S. R.; et al. Synthesis and surface attachment of molecular Re(I) complexes supported by functionalized bipyridyl ligands. Inorg. Chem. 2023, 62, 2359-75.

185. Jia, X.; Cui, K.; Alvarez-hernandez, J. L.; et al. Synthesis and surface attachment of molecular Re(I) hydride species with silatrane functionalized bipyridyl ligands. Organometallics 2023, 42, 2238-50.

186. Xie, M. S.; Xia, B. Y.; Li, Y.; et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy. Environ. Sci. 2016, 9, 1687-95.

187. Marianov, A. N.; Jiang, Y. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water. Appl. Catal. B. Environ. 2019, 244, 881-8.

188. Baranton, S.; Bélanger, D. Electrochemical derivatization of carbon surface by re duction of in situ generated diazonium cations. J. Phys. Chem. B. 2005, 109, 24401-10.

189. Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C.; Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 2011, 40, 4143-66.

190. Gross, A. J.; Bucher, C.; Coche-guerente, L.; Labbé, P.; Downard, A. J.; Moutet, J. Nickel (II) tetraphenylporphyrin modified surfaces via electrografting of an aryldiazonium salt. Electrochem. Commun. 2011, 13, 1236-9.

191. Picot, M.; Nicolas, I.; Poriel, C.; Rault-berthelot, J.; Barrière, F. On the nature of the electrode surface modification by cathodic reduction of tetraarylporphyrin diazonium salts in aqueous media. Electrochem. Commun. 2012, 20, 167-70.

192. Elgrishi, N.; Griveau, S.; Chambers, M. B.; Bedioui, F.; Fontecave, M. Versatile functionalization of carbon electrodes with a polypyridine ligand: metallation and electrocatalytic H+ and CO2 reduction. Chem. Commun. 2015, 51, 2995-8.

193. Rocklin, R. D.; Murray, R. W. Chemically modified carbon electrodes: Part XVII. Metallation of immobilized tetra(aminophenyl)porphyrin with manganese, iron, cobalt, nickel, copper and zinc, and electrochemistry of diprotonated tetraphenylporphyrin. J. Electroanal. Chem. Interf. Electrochem. 1979, 100, 271-82.

194. Gritzner, G.; Kůta, J. Recommendations on reporting electrode potentials in nonaqueous solvents: IUPC commission on electrochemistry. Electrochim. Acta. 1984, 29, 869-73.

195. Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 2017, 56, 6468-72.

196. Lin, S.; Diercks, C. S.; Zhang, Y. B.; et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-13.

197. Maurin, A.; Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 2016, 138, 2492-5.

198. Maurin, A.; Robert, M. Catalytic CO2-to-CO conversion in water by covalently functionalized carbon nanotubes with a molecular iron catalyst. Chem. Commun. 2016, 52, 12084-7.

199. Abdinejad, M.; Dao, C.; Deng, B.; et al. Electrocatalytic Reduction of CO2 to CH4 and CO in aqueous solution using pyridine-porphyrins immobilized onto carbon nanotubes. ACS. Sustainable. Chem. Eng. 2020, 8, 9549-57.

200. Zouaoui, N.; Ossonon, B. D.; Fan, M.; et al. Electroreduction of CO2 to formate on amine modified Pb electrodes. J. Mater. Chem. A. 2019, 7, 11272-81.

201. Fang, Y.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399-405.

202. Cao, Z.; Kim, D.; Hong, D.; et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 8120-5.

203. Kalita, N.; Satpathy, J. K.; Yadav, R.; Sastri, C. V.; Qureshi, M. Integrating homogeneous and heterogeneous catalytic systems for synergistic water oxidation: role of geometrically distinct bispidine metal complexes. Chem. Mater. 2025, 37, 2026-37.

204. Singh, A. K.; Kalita, N.; Qureshi, M. Self-healing redox active hydrogel-stabilized nickel porphyrin complex infused with metal oxide-hydroxide heterojunction for robust bifunctional water electrolysis. ACS. Appl. Mater. Interfaces. 2025, 17, 65600-11.

205. Wei, J.; Tang, H.; Sheng, L.; et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun. 2024, 15, 559.

206. Henari, F. Z.; Deen, G. R. Green synthesis of noble metal nanoparticles: nonlinear optics and applications. J. Opt. Photonics. Res. 2024.

207. Satavekar, B. S.; Anekar, S. V.; Shirke, B. S. Photocatalytic properties under ultraviolet light irradiation of NiO-ZnO nanocomposites prepared by Sol-Gel method. J. Opt. Photonics. Res. 2025.

208. Khan, B.; Faheem, M. B.; Peramaiah, K.; et al. Photoelectrochemical CO2 -to-formic acid conversions: advances in photoelectrode designs and scale-up strategies. Adv. Energy. Mater. 2026, 16, e04018.

209. Yang, R.; Fan, Y.; Zhang, Y.; et al. 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 2023, 135, e202218016.

210. Jayaramulu, K.; Devi, B. Hybrid two-dimensional porous materials. Chem. Mater. 2023, 35, 9473-92.

211. Xue, Y.; Zhao, G.; Yang, R.; et al. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911-36.

212. Hussain, H. N.; Ahmed, T.; Noor, U.; et al. Advances in two-dimensional metal-organic framework nanosheets synthesis, properties, and multifaceted photo and electrocatalytic applications. ChemNanoMat , 2025, e202500059.

213. Bergmann, A.; Roldan Cuenya, B. Operando insights into nanoparticle transformations during catalysis. ACS. Catal. 2019, 9, 10020-43.

214. Samantaray, M. K.; Pump, E.; Bendjeriou-Sedjerari, A.; et al. Surface organometallic chemistry in heterogeneous catalysis. Chem. Soc. Rev. 2018, 47, 8403-37.

215. Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/