REFERENCES
1. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 201613.
2. Kim, H.; Seo, D. H.; Bianchini, M.; et al. A new strategy for high-voltage cathodes for K-ion batteries: stoichiometric KVPO4F. Adv. Energy. Mater. 2018, 8, 1801591.
3. Gurung, A.; Qiao, Q. Solar charging batteries: advances, challenges, and opportunities. Joule 2018, 2, 1217-30.
4. Lee, W.; Kim, J.; Yun, S.; Choi, W.; Kim, H.; Yoon, W. Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy. Environ. Sci. 2020, 13, 4406-49.
5. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
6. Liu, Y.; Sun, Z.; Tan, K.; et al. Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A. 2019, 7, 4353-82.
7. Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279-82.
8. Xu, Y.; Sun, J.; He, Y.; et al. Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries. Sci. China. Chem. 2021, 64, 1401-9.
9. Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172-5.
10. Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 2017, 164, A54-60.
12. Wang, B.; Ang, E. H.; Yang, Y.; et al. Post-lithium-ion battery era: recent advances in rechargeable potassium-ion batteries. Chemistry 2021, 27, 512-36.
13. Kim, H.; Ji, H.; Wang, J.; Ceder, G. Next-generation cathode materials for non-aqueous potassium-ion batteries. Trends. Chem. 2019, 1, 682-92.
14. Saju, S. K.; Chattopadhyay, S.; Xu, J.; Alhashim, S.; Pramanik, A.; Ajayan, P. M. Hard carbon anode for lithium-, sodium-, and potassium-ion batteries: advancement and future perspective. Cell. Rep. Phys. Sci. 2024, 5, 101851.
15. Pramanik, A.; Sengupta, S.; Saju, S. K.; Chattopadhyay, S.; Kundu, M.; Ajayan, P. M. Ternary metal sulfides as electrode materials for Na/K-ion batteries and electrochemical supercapacitor: advances/challenges and prospects. Adv. Energy. Mater. 2024, 14, 2401657.
16. Wang, X.; Luo, Z.; Huang, J.; et al. S/N-co-doped graphite nanosheets exfoliated via three-roll milling for high-performance sodium/potassium ion batteries. J. Mater. Sci. Technol. 2023, 147, 47-55.
17. Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 2016, 163, A1295.
18. Park, W. B.; Han, S. C.; Park, C.; et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy. Mater. 2018, 8, 1703099.
19. Zhang, X.; Wei, Z.; Dinh, K. N.; et al. Layered oxide cathode for potassium-ion battery: recent progress and prospective. Small 2020, 16, e2002700.
20. Zhu, Y. H.; Zhang, Q.; Yang, X.; et al. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 2019, 5, 168-79.
21. Linnell, S. F.; Kim, E. J.; Choi, Y. S.; et al. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted
22. Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358-466.
23. Kaufman, J. L.; Van der Ven, A. Cation diffusion facilitated by antiphase boundaries in layered intercalation compounds. Chem. Mater. 2022, 4, 1889-96.
24. Cho, M. K.; Jo, J. H.; Choi, J. U.; et al. Cycling stability of layered potassium manganese oxide in nonaqueous potassium cells. ACS. Appl. Mater. Interfaces. 2019, 11, 27770-9.
25. Wu, Z.; Zou, J.; Chen, S.; Niu, X.; Liu, J.; Wang, L. Potassium-ion battery cathodes: past, present, and prospects. J. Power. Sources. 2021, 484, 229307.
26. Cong, J.; Luo, S. H.; Li, K.; et al. Research progress of manganese-based layered oxides as cathode materials for potassium-ion batteries. J. Electroanal. Chem. 2022, 927, 116971.
27. Xu, Y. S.; Guo, S. J.; Tao, X. S.; et al. High-performance cathode materials for potassium-ion batteries: structural design and electrochemical properties. Adv. Mater. 2021, 33, e2100409.
28. Delmas, C.; Fouassier, C.; Hagenmuller, P. Evolution cristallochimique et propriétés physiques de quelques oxydes lamellaires. Mater. Sci. Eng. 1977, 31, 297-301.
29. Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C. 1980, 99, 81-5.
30. Ren, M.; Fang, H.; Wang, C.; et al. Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy. Fuels. 2020, 34, 13412-26.
31. Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy. Mater. 2018, 8, 1701912.
32. Huang, Z. X.; Gu, Z. Y.; Heng, Y. L.; Ang, E. H.; Geng, H. B.; Wu, X. L. Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects. Chem. Eng. J. 2023, 452, 139438.
33. Jha, P. K.; Pralong, V.; Fichtner, M.; Barpanda, P. P3 type layered oxide frameworks: an appealing family of insertion materials for K-ion batteries. Curr. Opin. Electrochem. 2023, 38, 101216.
34. Jha, P. K.; Totade, S. N.; Barpanda, P.; et al. Evaluation of P3-type layered oxides as K-ion battery cathodes. Inorg. Chem. 2023, 62, 14971-9.
35. Liao, J.; Han, Y.; Zhang, Z.; Xu, J.; Li, J.; Zhou, X. Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy. Environ. Mater. 2021, 4, 178-200.
36. Liu, Z.; Su, H.; Yang, Y.; Wu, T.; Sun, S.; Yu, H. Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy. Storage. Mater. 2021, 34, 211-28.
37. Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries. Chem. Eng. J. 2019, 356, 53-9.
38. Kim, H.; Kim, J. C.; Bo, S. H.; Shi, T.; Kwon, D. H.; Ceder, G. K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy. Mater. 2017, 7, 1700098.
39. Hwang, J. Y.; Kim, J.; Yu, T. Y.; Myung, S. T.; Sun, Y. K. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries. Energy. Environ. Sci. 2018, 11, 2821-7.
40. Kim, H.; Seo, D. H.; Urban, A.; et al. Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries. Chem. Mater. 2018, 30, 6532-9.
41. Zhang, X.; Yang, Y.; Qu, X.; et al. Layered P2-Type K0.44Ni0.22Mn0.78O2 as a high-performance cathode for potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1905679.
42. Bai, P.; Jiang, K.; Zhang, X.; Xu, J.; Guo, S.; Zhou, H. Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 10490-5.
43. Xiao, Z.; Meng, J.; Xia, F.; et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy. Environ. Sci. 2020, 13, 3129-37.
44. Peng, B.; Li, Y.; Gao, J.; Zhang, F.; Li, J.; Zhang, G. High energy K-ion batteries based on P3-Type K0.5MnO2 hollow submicrosphere cathode. J. Power. Sources. 2019, 437, 226913.
45. Deng, T.; Fan, X.; Chen, J.; et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries. Adv. Funct. Mater. 2018, 28, 1800219.
46. Tang, Y.; Dong, H.; Liu, M.; et al. Realizing a single-phase reaction and K+/vacancy disordering in P2-
47. Nathan, M. G. T.; Park, W. B.; Naveen, N.; et al. A comparison of as-synthesized P2-K0.70[Cr0.85Sb0.15]O2 and Ion-Exchanged P2-
48. Park, H.; Lee, Y.; Ko, W.; et al. Review on cathode materials for sodium- and potassium-ion batteries: structural design with electrochemical properties. Batteries. Supercaps. 2023, 6, e202200486.
49. Li, W.; Bi, Z.; Zhang, W.; et al. Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J. Mater. Chem. A. 2021, 9, 8221-47.
50. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-82.
51. Sun, K.; Luo, S. H.; Hao, G.; et al. Review on layered manganese-based metal oxides cathode materials for potassium-ion batteries: from preparation to modification. Chem. Rec. 2024, 24, e202300327.
52. Kim, H.; Seo, D. H.; Kim, J. C.; et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29, 1702480.
53. Liu, Y. F.; Han, K.; Peng, D. N.; et al. Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat 2023, 5, e12422.
54. Su, Y.; Li, L.; Chen, G.; et al. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials. Chin. J. Chem. 2021, 39, 189-98.
55. Seong, W. M.; Kim, Y.; Manthiram, A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem. Mater. 2020, 32, 9479-89.
56. Yao, H. R.; Zheng, L.; Xin, S.; Guo, Y. G. Air-stability of sodium-based layered-oxide cathode materials. Sci. China. Chem. 2022, 65, 1076-87.
57. Lu, Z.; Dahn, J. R. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2. Chem. Mater. 2001, 13, 1252-7.
58. Han, M. H.; Gonzalo, E.; Sharma, N.; et al. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chem. Mater. 2016, 28, 106-16.
59. Duffort, V.; Talaie, E.; Black, R.; Nazar, L. F. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chem. Mater. 2015, 27, 2515-24.
60. Yang, Y.; Wang, Z.; Du, C.; et al. Decoupling the air sensitivity of Na-layered oxides. Science 2024, 385, 744-52.
61. Zhang, X.; Yang, X.; Sun, G.; et al. Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204318.
62. Liu, X.; Guo, Y.; Zhang, Q.; et al. K-rich spinel interface of air-stable layered oxide cathodes for potassium-ion batteries. Adv. Mater. 2024, 36, e2407980.
63. Wang, H.; Zhai, D.; Kang, F. Solid electrolyte interphase (SEI) in potassium ion batteries. Energy. Environ. Sci. 2020, 13, 4583-608.
64. Mao, J.; Wang, C.; Lyu, Y.; et al. Organic electrolyte design for practical potassium-ion batteries. J. Mater. Chem. A. 2022, 10, 19090-106.
65. Liu, Y.; Gao, C.; Dai, L.; et al. The features and progress of electrolyte for potassium ion batteries. Small 2020, 16, e2004096.
66. Zhang, J.; Gai, J.; Song, K.; Chen, W. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell. Rep. Phys. Sci. 2022, 3, 100868.
67. Shi, C.; Wang, L.; Chen, X.; et al. Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale. Horiz. 2022, 7, 338-51.
68. Che, H.; Yang, X.; Wang, H.; et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. J. Power. Sources. 2018, 407, 173-9.
69. Wang, C.; Wang, K.; Ren, M.; et al. Interfacial chemistry enables highly reversible Na extraction/intercalation in layered-oxide cathode materials. Chin. J. Chem. 2023, 41, 1791-6.
71. Mu, L.; Feng, X.; Kou, R.; et al. Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials. Adv. Energy. Mater. 2018, 8, 1801975.
72. Yaghoobnejad Asl H, Manthiram A. Proton-induced disproportionation of Jahn-Teller-Active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 2020, 142, 21122-30.
73. Li, F.; Gu, X.; Wu, S.; et al. Interface engineering enabled high-performance layered P3-type K0.5MnO2 cathode for low-cost potassium-ion batteries. Electrochim. Acta. 2023, 439, 141571.
74. Huang, Y.; Zhang, X.; Chen, N.; Tian, R.; Zeng, Y.; Du, F. A conformal protective skin producing stable cathode-electrolyte interface for long-life potassium-ion batteries. Small 2023, 19, e2302841.
75. Xue, L.; Li, Y.; Gao, H.; et al. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164-7.
76. Bao, J.; Deng, W.; Liu, J.; Sun, C. Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy. Storage. Mater. 2021, 42, 806-14.
77. Liu, T.; Hou, S.; Li, Y.; et al. Insight of K-deficient layered KxMnO2 cathode for potassium-ions batteries. J. Energy. Chem. 2022, 64, 335-43.
78. Puneeth, N. P. N.; Kaushik, S. D.; Kalai Selvan, R. Synthesis and electrochemical properties of crystalline K0.7MnO2 particles for K-ion batteries. Mater. Lett. 2022, 316, 131997.
79. Choi, J. U.; Kim, J.; Jo, J. H.; et al. Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy. Storage. Mater. 2020, 25, 714-23.
80. Baskar, S.; Sada, K.; Barpanda, P. Layered P2-NaxCoO2 and NaxFeO2 as cathode materials for potassium-ion batteries. ECS. Trans. 2017, 80, 357-64.
81. Han, S. C.; Park, W. B.; Sohn, K. S.; Pyo, M. KFeO2 with corner-shared FeO4 frameworks as a new type of cathode material in potassium-ion batteries. J. Solid. State. Electrochem. 2019, 23, 3135-43.
82. Choi, J. U.; Kim, J.; Hwang, J. Y.; Jo, J. H.; Sun, Y. K.; Myung, S. T. K0.54[Co0.5Mn0.5]O2: new cathode with high power capability for potassium-ion batteries. Nano. Energy. 2019, 61, 284-94.
83. Hironaka, Y.; Kubota, K.; Komaba, S. P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 2017, 53, 3693-6.
84. Jha, P. K.; Barpanda, P. Role of Co content on the electrode properties of P3-type K0.5Mn1-xCoxO2 potassium insertion materials. Inorg. Chem. 2024, 63, 7137-45.
85. Puneeth, N. P. N.; Kaushik, S. D.; Kalai, Selvan. R. Improved K-ion diffusion kinetics of cobalt-substituted P3-type K0.67MnO2 electrodes for K-ion batteries. ACS. Appl. Energy. Mater. 2024, 7, 2600-13.
86. Zhang, X.; Yu, D.; Wei, Z.; et al. Layered P3-type K0.4Fe0.1Mn0.8Ti0.1O2 as a low-cost and zero-strain electrode material for both potassium and sodium storage. ACS. Appl. Mater. Interfaces. 2021, 13, 18897-904.
87. Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries. ChemElectroChem 2019, 6, 2308-15.
88. Ko, W.; Lee, S.; Park, H.; et al. Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries. Carbon. Energy. 2024, 6, e454.
89. Chen, H.; Gao, X. W.; Li, Q.; et al. Layer-structured K0.5Mn0.8Cu0.1Mg0.1O2 for high-performance potassium-ion batteries by alleviating the phase transformation. J. Mater. Chem. A. 2024, 12, 6261-8.
90. Huang, R.; Xue, Q.; Lin, J.; et al. Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano. Res. 2022, 15, 3143-9.
91. Xu, Y. S.; Zhang, Q. H.; Wang, D.; et al. Enabling reversible phase transition on K5/9Mn7/9Ti2/9O2 for high-performance potassium-ion batteries cathodes. Energy. Storage. Mater. 2020, 31, 20-6.
92. Xiao, Z.; Xia, F.; Xu, L.; et al. Suppressing the Jahn-Teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2108244.
93. Yin, X.; Gu, M.; Yang, Q.; Lei, K. Suppression of Jahn-Teller distortion in a layered Mn-based oxide cathode with Li substitution toward achieving stable K-storage. New. J. Chem. 2024, 48, 9352-7.
94. Gao, X. W.; Wang, S. S.; Li, Q.; Yang, R.; Liu, Z.; Luo, W. B. A synergistic pinning effect in a layer-structured oxide cathode for enhancing stability towards potassium-ion batteries. J. Mater. Chem. A. 2024, 12, 15676-84.
95. Zhang, Z.; Qiao, Y.; Zhao, J.; et al. Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chin. Chem. Lett. 2025, 36, 109907.
96. Kim, Y.; Oh, G.; Lee, J.; et al. Stabilization of layered-type potassium manganese oxide cathode with fluorine treatment for high-performance K-ion batteries. J. Power. Sources. 2023, 588, 233729.
97. Xu, Y. S.; Qi, M. Y.; Zhang, Q. H.; et al. Anion doping for layered oxides with a solid-solution reaction for potassium-ion battery cathodes. ACS. Appl. Mater. Interfaces. 2022, 14, 13379-87.
98. Xu, X.; Li, X. L.; Rahman, M. M.; et al. Promoting reversibility of layered potassium cathode through interstitial doping. Chem. Eng. J. 2023, 477, 147021.
99. Wu, L.; Fu, H.; Lyu, W.; et al. Rational regulation of high-voltage stability in potassium layered oxide cathodes. ACS. Nano. 2024, 18, 13415-27.
100. Jo, J. H.; Hwang, J. Y.; Choi, J.; Sun, Y. K.; Myung, S. T. Layered K0.28MnO2·0.15H2O as a cathode material for potassium-ion intercalation. ACS. Appl. Mater. Interfaces. 2019, 11, 43312-9.
101. Lin, B.; Zhu, X.; Fang, L.; et al. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, e1900060.
102. Zhao, Z.; Sun, Y.; Pan, Y.; et al. A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries. J. Colloid. Interface. Sci. 2023, 652, 231-9.
103. Luo, R. J.; Li, X. L.; Ding, J. Y.; et al. Suppressing Jahn-Teller distortion and phase transition of K0.5MnO2 by K-site Mg substitution for potassium-ion batteries. Energy. Storage. Mater. 2022, 47, 408-14.
104. Caixiang, Z.; Hao, J.; Zhou, J.; Yu, X.; Lu, B. Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode. Adv. Energy. Mater. 2023, 13, 2203126.
105. Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 264-9.
106. Ding, X.; Wang, Y.; Wang, X.; et al. Multi-element doping induced transition metal disordered layered oxide for rapid and stable potassium storage. Chem. Eng. J. 2023, 466, 143331.
107. Chu, S.; Shao, C.; Tian, J.; et al. High entropy-induced kinetics improvement and phase transition suppression in K-ion battery layered cathodes. ACS. Nano. 2024, 18, 337-46.
108. Cai, Y.; Liu, W.; Chang, F.; et al. Entropy-stabilized layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a high-rate and stable cathode for potassium-ion batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 48277-86.
109. Zeng, G.; Liu, B.; Ali, U.; et al. The local disorder induced by high-entropy doping results in highly stable cathode materials for aqueous potassium-ion batteries. Appl. Catal. B. Environ. Energy. 2024, 351, 123996.
110. Liu, B.; Zhang, Q.; Zhang, L.; Yong, X.; Li, L.; Wang, C. Manganese charge redistribution induced by high-entropy charge compensation mechanism for aqueous potassium-ion batteries. Energy. Storage. Mater. 2024, 66, 103221.
111. Park, S.; Park, S.; Park, Y.; Alfaruqi, M. H.; Hwang, J.; Kim, J. A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy. Environ. Sci. 2021, 14, 5864-74.
112. Huang, Y.; Zhang, X.; Lin, H.; et al. S Synergistically enhanced structural, thermal and interfacial stability of K0.45MnO2 via tailoring the local structure for high-energy and high-power potassium-ion batteries. Chem. Eng. J. 2023, 453, 139571.
113. Mu, L.; Xu, S.; Li, Y.; et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928-33.
114. Wang, H.; Peng, H.; Xiao, Z.; et al. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy. Storage. Mater. 2023, 58, 101-9.
115. Chen, J.; Rao, A. M.; Gao, C.; et al. Phase-transition-free rivets for layered oxide potassium cathodes. Nano. Res. 2024, 17, 9671-8.
116. Deng, Q.; Tian, C.; Luo, Z. Atomic layer deposition of Al2O3 on organic potassium terephthalate with enhanced K-storage behavior for K-ion batteries. Ionics 2020, 26, 1805-12.
117. Fu, Q.; Peng, C.; Zhou, W.; et al. Regulating cathode surface hydroxyl chemistry enables superior potassium storage. Proc. Natl. Acad. Sci. USA. 2023, 120, e2301622120.
118. Li, S.; Zhao, L. K.; Bian, Y. H.; et al. Protective layer constructed by liquid phase quenching for long lifespan potassium ion batteries. Chem. Eng. J. 2024, 496, 154382.
119. Shi, H.; Gao, X. W.; Wang, X.; et al. Surface residual alkali reverse utilization: stabilizing the lay-structured oxide cathode for high stability potassium ion batteries. Chem. Eng. J. 2024, 484, 149574.
120. Cai, Y.; Zeng, X.; Pang, D.; et al. Layered transition metal oxides prepared by plasma-enhanced sintering technique as environmentally stable cathode for potassium-ion batteries. Materialia 2023, 27, 101674.
121. Deng, T.; Fan, X.; Luo, C.; et al. Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries. Nano. Lett. 2018, 18, 1522-9.
122. Zhang, Z.; Hu, Q.; Liao, J.; et al. Uniform P2-K0.6CoO2 microcubes as a high-energy cathode material for potassium-ion batteries. Nano. Lett. 2023, 23, 694-700.
123. Chen, L.; Zhang, Y.; Hao, C.; et al. Interlayer engineering of KxMnO2 enables superior alkali metal ion storage for advanced hybrid capacitors. ChemElectroChem 2022, 9, e202200059.
124. Wang, X.; Xu, X.; Niu, C.; et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano. Lett. 2017, 17, 544-50.
125. Chong, S.; Wu, Y.; Chen, Y.; et al. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries. Electrochim. Acta. 2019, 293, 299-306.
126. Xu, S.; Bao, C.; Yu, M.; Liu, S.; Chen, L.; Zhang, D. Layered P3 type K0.48Ni0.2Co0.2Mn0.6O2 with microspherical and microcubic mixed morphology as a cathode material for potassium-ion batteries. Mater. Lett. 2020, 270, 127733.
127. Zhang, Z.; Sun, J.; Duan, L.; et al. Self-templated construction of peanut-like P3-type K0.45Mn0.5Co0.5O2 for highly reversible potassium storage. J. Mater. Chem. A. 2022, 10, 554-60.
128. Duan, L.; Xu, J.; Xu, Y.; et al. Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries. J. Energy. Chem. 2023, 76, 332-8.
129. Duan, L.; Xu, Y.; Zhang, Z.; et al. A high-performance cathode for potassium-ion batteries based on uniform P3-type
130. Hao, J.; Xiong, K.; Zhou, J.; et al. Yolk-Shell P3-type K0.5[Mn0.85Ni0.1Co0.05]O2: a low-cost cathode for potassium-ion batteries. Energy. Environ. Mater. 2022, 5, 261-9.
131. Lv, J.; Wang, B.; Hao, J.; et al. Single-crystalline Mn-based oxide as a high-rate and long-life cathode material for potassium-ion battery. eScience 2023, 3, 100081.
132. Zhao, S.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv. Energy. Mater. 2019, 9, 1803757.
133. Weng, J.; Duan, J.; Sun, C.; et al. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.
134. Duan, L.; Shao, C.; Liao, J.; et al. A P2/P3 biphasic layered oxide composite as a high-energy and long-cycle-life cathode for potassium-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202400868.
135. Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Influence of Na-substitution on the structure and electrochemical properties of layered oxides K0.67Ni0.17Co0.17Mn0.66O2 cathode materials. Electrochim. Acta. 2018, 286, 114-22.
136. Ni, L.; Xu, G.; Li, C.; Cui, G. Electrolyte formulation strategies for potassium-based batteries. Exploration 2022, 2, 20210239.
137. Wang, H.; Nie, L.; Chu, X.; et al. Flame-retardant nonaqueous electrolytes for high-safety potassium-ion batteries. Small. Methods. 2024, 8, e2301104.
138. He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS. Energy. Lett. 2017, 2, 1122-7.
139. Zhao, S.; Li, G.; Zhang, B.; et al. Highly-solvating electrolyte enables mechanically stable and inorganic-rich cathode electrolyte interphase for high-performing potassium-ion batteries. Adv. Mater. 2024, 36, e2405184.
140. Liu, S.; Mao, J.; Zhang, Q.; et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 2020, 59, 3638-44.
141. Zhang, D.; Fu, H.; Ma, X.; et al. Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew. Chem. Int. Ed. 2024, 63, e202405153.
142. Gu, M.; Zhou, X.; Yang, Q.; et al. Anion-reinforced solvation structure enables stable operation of ether-based electrolyte in high-voltage potassium metal batteries. Angew. Chem. Int. Ed. 2024, 63, e202402946.
143. Gao, Y.; Li, W.; Ou, B.; et al. A dilute fluorinated phosphate electrolyte enables 4.9 v-class potassium ion full batteries. Adv. Funct. Mater. 2023, 33, 2305829.
144. Fan, L.; Xie, H.; Hu, Y.; et al. A tailored electrolyte for safe and durable potassium ion batteries. Energy. Environ. Sci. 2023, 16, 305-15.
145. Li, F.; Gu, X.; Cui, A.; et al. In situ structure modulation of cathode-electrolyte interphase for high-performance potassium-ion battery. Adv. Funct. Mater. 2024, 34, 2313146.
146. Zhang, H.; Wang, H.; Li, W.; et al. Enabling high-performance potassium-ion batteries by manipulating interfacial chemistry. Adv. Funct. Mater. 2024, 34, 2312368.
147. Wang, T.; He, X.; Zhou, M.; et al. In situ ions induced formation of KxF-rich SEI layers toward ultrastable life of potassium-ion batteries. Adv. Mater. 2024, 36, e2401943.
148. Hosaka, T.; Matsuyama, T.; Kubota, K.; Yasuno, S.; Komaba, S. Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 34873-81.
149. Yang, X.; Rogach, A. L. Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv. Energy. Mater. 2019, 9, 1900747.
150. Liu, X.; Tong, Y.; Wu, Y.; Zheng, J.; Sun, Y.; Li, H. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small. Methods. 2021, 5, e2101130.
151. Zhao, S.; Liu, Z.; Xie, G.; et al. High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy. Environ. Sci. 2022, 15, 3015-23.
152. Yu, Q.; Hu, J.; Wang, W.; et al. K0.6CoO2-xNx porous nanoframe: a co-enhanced ionic and electronic transmission for potassium ion batteries. Chem. Eng. J. 2020, 396, 125218.
153. Hwang, J. Y.; Kim, J.; Yu, T. Y.; et al. A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. J. Mater. Chem. A. 2019, 7, 21362-70.
154. Lei, K.; Zhu, Z.; Yin, Z.; Yan, P.; Li, F.; Chen, J. Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage. Chem 2019, 5, 3220-31.
155. Zhang, Q.; Didier, C.; Pang, W. K.; et al. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy. Mater. 2019, 9, 1900568.
156. Liu, L.; Liang, J.; Wang, W.; et al. A P3-type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect. ACS. Appl. Mater. Interfaces. 2021, 13, 28369-77.
157. Liang, J.; Lin, C.; Meng, X.; et al. P3-type K0.45Co1/12Mg1/12Mn5/6O2 as a superior cathode material for potassium-ion batteries with high structural reversibility ensured by Co-Mg Co-substitution. J. Mater. Chem. A. 2021, 9, 17261-9.
158. Jo, J. H.; Choi, J. U.; Park, Y. J.; et al. P2-K0.75[Ni1/3Mn2/3]O2 cathode material for high power and long life potassium-ion batteries. Adv. Energy. Mater. 2020, 10, 1903605.
159. Jha, P. K.; Golubnichiy, A.; Sachdeva, D.; et al. Chimie douce derived novel P2-type layered oxide for potassium-ion batteries. Adv. Funct. Mater. 2024, 34, 2410665.
160. Sohn, W.; Chae, J. S.; Lim, G. H.; Roh, K. C. Ion-exchange-assisted Li0.27K0.72Ni0.6Co0.2Mn0.2O2 cathode in potassium-ion batteries. J. Alloys. Compd. 2022, 898, 162904.
161. Liu, Z. D.; Gao, X. W.; Mu, J. J.; et al. Multiphase riveting structure for high power and long lifespan potassium-ion batteries. Adv. Funct. Mater. 2024, 34, 2315006.
162. Luo, K.; Roberts, M. R.; Hao, R.; et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684-91.
163. Maitra, U.; House, R. A.; Somerville, J. W.; et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 2018, 10, 288-95.
164. Liu, B.; Zhang, Q.; Ali, U.; et al. Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem. Sci. 2022, 13, 10846-55.
165. Pandey, A. K.; Campéon, B. D.; Konuma, I.; Yabuuchi, N. P3-type layered K0.6Cr0.6Ti0.4O2 for potassium storage applications. Energy. Adv. 2023, 2, 98-102.
166. Dang, R.; Li, N.; Yang, Y.; et al. Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode material for potassium-ion batteries. J. Power. Sources. 2020, 464, 228190.
167. Zheng, Y.; Li, J.; Ji, S.; et al. Zinc-doping strategy on P2-type Mn-based layered oxide cathode for high-performance potassium-ion batteries. Small 2023, 19, e2302160.
168. Wang, H.; Meng, J.; Xiao, Z.; et al. Strain-modulated Mn-rich layered oxide enables highly stable potassium-ion batteries. Energy. Storage. Mater. 2024, 67, 103324.
169. Ai, R.; Zhang, X.; Li, S.; Wei, Z.; Chen, G.; Du, F. Selective lattice doping enables a low-cost, high-capacity and long-lasting potassium layered oxide cathode for potassium and sodium storage. Chemistry 2024, 30, e202400791.