REFERENCES
1. Zheng, M.; You, Y.; Lu, J. Understanding materials failure mechanisms for the optimization of lithium-ion battery recycling. Nat. Rev. Mater. 2025, 10, 355-68.
2. Li, R.; Kirkaldy, N. D.; Oehler, F. F.; Marinescu, M.; Offer, G. J.; O’Kane, S. E. J. The importance of degradation mode analysis in parameterising lifetime prediction models of lithium-ion battery degradation. Nat. Commun. 2025, 16, 2776.
3. Machala, M. L.; Chen, X.; Bunke, S. P.; et al. Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nat. Commun. 2025, 16, 988.
4. Istrate, R.; Mas-fons, A.; Beylot, A.; et al. Decarbonizing lithium-ion battery primary raw materials supply chain. Joule 2024, 8, 2992-3016.
5. Cho, T. H.; Chen, Y.; Liao, D. W.; et al. Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures. Joule 2025, 9, 101881.
6. Cui, H.; Song, Y.; Ren, D.; Wang, L.; He, X. Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 2024, 8, 29-44.
7. Guo, Y.; Guo, C.; Li, P.; et al. Improving the fast-charging capability of NbWO-based Li-ion batteries. Nat. Commun. 2025, 16, 2441.
8. Zeng, W.; Xia, F.; Wang, J.; et al. Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries. Nat. Commun. 2024, 15, 7371.
9. Lan, X.; Li, Z.; Zeng, Y.; Han, C.; Peng, J.; Cheng, H. Phosphorus-based anodes for fast-charging alkali metal ion batteries. EcoMat 2024, 6, e12452.
10. Ye, Y.; Xu, R.; Huang, W.; et al. Quadruple the rate capability of high-energy batteries through a porous current collector design. Nat. Energy. 2024, 9, 643-53.
11. Jin, H.; Huang, Y.; Wang, C.; Ji, H. Phosphorus-based anodes for fast charging lithium-ion batteries: challenges and opportunities. Small. Sci. 2022, 2, 2200015.
13. Jin, H.; Xin, S.; Chuang, C.; et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192-7.
14. Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy. 2019, 4, 540-50.
15. Jin, S.; Gao, X.; Hong, S.; et al. Fast-charge, long-duration storage in lithium batteries. Joule 2024, 8, 746-63.
16. Xu, J.; Cai, X.; Cai, S.; et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy. Environ. Mater. 2023, 6, e12450.
17. Yan, X.; Zhao, G.; Wu, C.; et al. A biphase coupled cathode enables all-organic rocking-chair lithium ion batteries based on crystalline AB-stacked covalent triazine-based frameworks. Green. Chem. 2024, 26, 10593-603.
18. Du, W.; Du, X.; Ma, M.; Huang, S.; Sun, X.; Xiong, L. Polymer electrode materials for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110871.
19. Dong, W.; Ye, B.; Cai, M.; et al. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries. ACS. Energy. Lett. 2023, 8, 881-8.
20. Huang, J.; Zhang, B.; Zhang, S.; et al. Ultra-fine Nano-Mg(OH)2 electrodeposited in flexible confined space and its enhancement of the performance of LiFePO4 lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2307215.
21. Meng, F.; Xiong, X.; Tan, L.; Yuan, B.; Hu, R. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review. Energy. Storage. Mater. 2022, 44, 390-407.
22. Wang, R.; Wang, L.; Liu, R.; Li, X.; Wu, Y.; Ran, F. “Fast-Charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS. Nano. 2024, 18, 2611-48.
23. Weng, S.; Yang, G.; Zhang, S.; et al. Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano. Micro. Lett. 2023, 15, 215.
24. Yue, X.; Zhang, J.; Dong, Y.; et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew. Chem. 2023, 135, e202302285.
25. Zhang, Y.; Cheng, L.; Zhu, Y.; et al. Reversible Li plating regulation on graphite anode through a barium sulfate nanofibers-based dielectric separator for fast charging and high-safety lithium-ion battery. J. Energy. Chem. 2025, 101, 511-23.
26. Cai, W.; Yao, Y. X.; Zhu, G. L.; et al. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806-33.
27. Lee, S. H.; Cho, Y.; Jeon, Y. P.; et al. Sustainable eco-friendly sub-micron NaCl crystal powder-assisted method to synthesize SiOx/C as anode materials originated from rice husk for lithium-ion batteries. EcoMat 2023, 5, e12401.
28. Xing, J.; Chen, T.; Yi, L.; et al. Endowing Cu foil self-wettable in molten lithium: a roll-to-roll wet coating strategy to fabricate high-performance ultrathin lithium metal anodes. Energy. Storage. Mater. 2023, 63, 103067.
29. Liu, H.; Zhu, Z.; Yan, Q.; et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020, 585, 63-7.
30. Wu, Z. S.; Ren, W.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS. Nano. 2011, 5, 5463-71.
31. Jin, X.; Han, Y.; Zhang, Z.; et al. Mesoporous single-crystal lithium titanate enabling fast-charging Li-ion batteries. Adv. Mater. 2022, 34, 2109356.
32. Han, X.; Gong, H.; Li, H.; Sun, J. Fast-charging phosphorus-based anodes: promises, challenges, and pathways for improvement. Chem. Rev. 2024, 124, 6903-51.
33. Wu, H.; Chan, G.; Choi, J. W.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310-5. https://www.nature.com/articles/nnano.2012.35#citeas (accessed 2025-09-28).
34. Zhou, X.; Yu, L.; Yu, X.; Lou, X. W. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy. Mater. 2016, 6, 1601177.
35. Wen, Y.; Yuan, B.; Peng, W.; Liu, Y.; Han, Q.; Hu, R. Enhanced diffusion kinetics in Y-doped SnO2 anodes for low-temperature lithium-ion batteries: a combined theoretical and experimental study. J. Alloys. Compd. 2024, 990, 174481.
36. Jiang, Y.; Song, D.; Wu, J.; et al. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS. Nano. 2019, 13, 9100-11.
37. Ning, H.; Liang, C.; Qiang, S.; et al. Gold-doped iron disulfide as cathode materials for enhanced electrochemical performance in thermal batteries. Rare. Met. 2025, 44, 1687-700.
38. Liang, X.; Li, X.; Xiang, Q.; et al. Surficial oxidation of phosphorus for strengthening interface interaction and enhancing lithium-storage performance. Nano. Lett. 2022, 22, 9335-42.
39. Zhang, W.; Pang, W. K.; Sencadas, V.; Guo, Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534-47.
40. Zheng, Z.; Wu, H. H.; Liu, H.; et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS. Nano. 2020, 14, 9545-61.
41. Zhang, X.; Ou-yang, W.; Zhu, G.; Lu, T.; Pan, L. Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon 2019, 143, 116-24.
42. Xu, X.; Liu, J.; Hu, R.; et al. Self-supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long-life lithium-ion batteries. Chem. Eur. J. 2017, 23, 5198-204.
43. Ni, L.; Chen, G.; Liu, X.; et al. Self-supported fe-doped cop nanowire arrays grown on carbon cloth with enhanced properties in lithium-ion batteries. ACS. Appl. Energy. Mater. 2019, 2, 406-12.
44. Aso, K.; Hayashi, A.; Tatsumisago, M. Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries. Inorg. Chem. 2011, 50, 10820-4.
45. Xiang, J.; Wang, X.; Xia, X.; Zhong, J.; Tu, J. Fabrication of highly ordered porous nickel phosphide film and its electrochemical performances toward lithium storage. J. Alloys. Compd. 2011, 509, 157-60.
46. Liu, Y.; Zeng, C.; Liu, X.; et al. Rational Design of high-entropy phosphorus-based alloy anodes for fast-charging lithium-ion batteries. Adv. Funct. Mater. , 2025, e10753.
47. Liu, C.; Han, M.; Cao, Y.; et al. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy. Storage. Mater. 2021, 37, 417-23.
48. Zhang, S.; Liu, C.; Wang, H.; et al. A covalent P-C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes. ACS. Nano. 2021, 15, 3365-75.
49. He, S. A.; Liu, Q.; Cui, Z.; et al. Red phosphorus anchored on nitrogen-doped carbon bubble-carbon nanotube network for highly stable and fast-charging lithium-ion batteries. Small 2022, 18, 2105866.
50. Ryder, C. R.; Wood, J. D.; Wells, S. A.; et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597-602.
51. Tian, H.; Wang, H.; Wang, J.; Qu, G.; Yu, X.; Jiang, G. Understanding the intrinsic reactivity of black phosphorus. Acc. Mater. Res. 2024, 5, 1472-83.
52. Zhang, S.; Zhang, Y.; Zhang, Z.; et al. Bi Works as a Li reservoir for promoting the fast-charging performance of phosphorus anode for Li-ion batteries. Adv. Energy. Mater. 2022, 12, 2103888.
53. Chen, X.; Chen, X. R.; Hou, T. Z.; et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.
54. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett. 2008, 8, 2277-82.
55. Liu, C.; Han, X.; Cao, Y.; Zhang, S.; Zhang, Y.; Sun, J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy. Storage. Mater. 2019, 20, 343-72.
56. Wang, J.; Liu, W.; Wang, C. Superior rate and long-lived performance of few-layered black phosphorus-based hybrid anode for lithium-ion batteries. Electrochim. Acta. 2022, 403, 139697.
57. Li, X.; Han, X.; Liu, R.; et al. Tannic acid-polypyrrole multifunctional coating layer enhancing the interface effect and efficient Li-ion transport of a phosphorus anode. Nanoscale 2022, 14, 3625-31.
58. Wu, Y.; Huang, H. B.; Feng, Y.; Wu, Z. S.; Yu, Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv. Mater. 2019, 31, 1901414.
59. Sun, Y.; Wang, L.; Li, Y.; et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 2019, 3, 1080-93.
60. Lei, W.; Liu, Y.; Jiao, X.; et al. Improvement of cycling phosphorus-based anode with LiF-rich solid electrolyte interphase for reversible lithium storage. ACS. Appl. Energy. Mater. 2019, 2, 2699-707.
61. Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.
62. Cai, Y.; Zhang, G.; Zhang, Y. Phosphorene: physical properties, synthesis, and fabrication, 1th ed.; CRC Press, 2019.
63. Toy, A. D. F. The chemistry of phosphorus: pergamon texts in inorganic chemistry; Vol 3, Elsevier, 2016. https://books.google.com/books?id=sAJPDAAAQBAJ&hl=zh-CN&source=gbs_navlinks_s (accessed 2025-09-26).
64. Fung, C. M.; Er, C. C.; Tan, L. L.; Mohamed, A. R.; Chai, S. P. Red phosphorus: an up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 2022, 122, 3879-965.
65. Tian, H.; Wang, J.; Lai, G.; et al. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem. Soc. Rev. 2023, 52, 5388-484.
66. Jones, R. O.; Hohl, D. Structure of phosphorus clusters using simulated annealing-P2 to P8. J. Chem. Phys. 1990, 92, 6710-21.
67. Olego, D.; Baumann, J.; Kuck, M.; Schachter, R.; Michel, C.; Raccah, P. The microscopic structure of bulk amorphous red phosphorus: a Raman scattering investigation. Solid. State. Commun. 1984, 52, 311-4.
68. Shanabrook, B. V.; Lannin, J. S. Structural and vibrational properties of amorphous phosphorus. Phys. Rev. B. 1981, 24, 4771.
70. Farman, H.; Dore, J.; Elliott, S. Intermediate-range order in amorphous phosphorus. Phys. Lett. A. 1994, 186, 410-4.
71. Goodman, N. B.; Ley, L.; Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B. 1983, 27, 7440.
72. Roth, W. L.; DeWitt, T. W.; Smith, A. J. Polymorphism of red phosphorus. J. Am. Chem. Soc. 1947, 69, 2881-5.
73. Sun, Z.; Zhang, B.; Yan, Q. Solution phase synthesis of the less-known Form II crystalline red phosphorus. Inorg. Chem. Front. 2022, 9, 4385-93.
74. Yoon, J. Y.; Lee, Y.; Kim, D. G.; et al. Type-II red phosphorus: wavy packing of twisted pentagonal tubes. Angew. Chem. Int. Ed. 2023, 62, e202307102.
75. Zhu, Y.; Ren, J.; Zhang, X.; et al. Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production. Nanoscale 2020, 12, 13297-310.
76. Ruck, M.; Hoppe, D.; Wahl, B.; Simon, P.; Wang, Y.; Seifert, G. Fibrous red phosphorus. Angew. Chem. Int. Ed. 2005, 44, 7616-9.
77. Baumer, F.; Ma, Y.; Shen, C.; et al. Synthesis, characterization, and device application of antimony-substituted violet phosphorus: a layered material. ACS. Nano. 2017, 11, 4105-13.
78. Ding, K.; Wen, L.; Huang, S.; Li, Y.; Zhang, Y.; Lu, Y. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC. Adv. 2016, 6, 80872-84.
79. Schusteritsch, G.; Uhrin, M.; Pickard, C. J. Single-layered hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano. Lett. 2016, 16, 2975-80.
80. Hu, Z.; Yuan, L.; Liu, Z.; Shen, Z.; Yu, J. C. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angew. Chem. Int. Ed. 2016, 128, 9732-7.
81. Yu, Z.; Song, J.; Gordin, M. L.; Yi, R.; Tang, D.; Wang, D. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.
82. Sun, Z.; Chen, W.; Zhang, B.; et al. Polarization conversion in bottom-up grown quasi-1D fibrous red phosphorus flakes. Nat. Commun. 2023, 14, 4398.
84. Liu, H.; Neal, A. T.; Zhu, Z.; et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS. Nano. 2014, 8, 4033-41.
85. Boidi, G.; Ronai, B.; Heift, D.; et al. Tribology of 2D black phosphorus - current state-of-the-art and future potential. Adv. Colloid. Interface. Sci. 2024, 328, 103180.
86. Smith, J. B.; Hagaman, D.; Ji, H. F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 2016, 27, 215602.
87. Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 1963, 139, 1291-2.
88. Zhong, Q. Intrinsic and engineered properties of black phosphorus. Mater. Today. Phys. 2022, 28, 100895.
89. Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
90. Cartz, L.; Srinivasa, S. R.; Riedner, R. J.; Jorgensen, J. D.; Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 1979, 71, 1718-21.
91. Lee, H. U.; Lee, S. C.; Won, J.; et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep. 2015, 5, 8691.
92. Hultgren, R.; Gingrich, N. S.; Warren, B. E. The Atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-5.
93. Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 4523-30.
94. Li, L.; Kim, J.; Jin, C.; et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21-5.
95. Kim, J.; Baik, S. S.; Ryu, S. H.; et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723-6.
96. Macdonald, T. J.; Clancy, A. J.; Shutt, R. R.; Howard, C. A. Phosphorene nanoribbons for next-generation energy devices. Joule 2022, 6, 2441-6.
97. Ma, R.; Xiong, L.; Jiao, P.; et al. Origins of severe structural changes during alloying-dealloying reactions in black phosphorus. J. Am. Chem. Soc. 2024, 146, 23044-53.
98. Boretti, A. Challenges in using phosphorene as electrode material in lithium-ion batteries. Energy. Storage. 2024, 6, e607.
99. Liang, W.; Chen, B.; Li, D.; et al. Understanding the structural relation and electrochemical evolution between ZnGeP2 and ZnSiP2 twin phosphides for advanced Li-ion batteries. Chem. Eng. J. 2024, 496, 154332.
100. Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; et al. An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics. Nanoscale 2019, 11, 1304-12.
101. Lin, X.; Ke, Y.; Peng, X.; et al. Improving the rate capacity and cycle stability of FeP anodes for lithium-ion batteries via in situ carbon encapsulation and copper doping. J. Colloid. Interface. Sci. 2023, 634, 346-56.
102. Wang, C.; Yan, J.; Li, T.; et al. A Coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew. Chem. 2021, 133, 25217-23.
103. Veluri, P. S.; Mitra, S. Iron phosphide (FeP) synthesis, and full cell lithium-ion battery study with a [Li(NiMnCo)O2] cathode. RSC. Adv. 2016, 6, 87675-9.
104. Zheng, J.; Dong, R.; Liu, P.; et al. Interfacial engineered Fe2O3@FeP nanorod arrays as capacitive storage dominated and high charge transfer anode for high-rate lithium-ion batteries. Surf. Coat. Technol. 2021, 421, 127471.
105. Li, Z.; Zhang, Y.; Bai, J.; Wang, J.; Zhao, H. Well-dispersed FeP@C nanoparticles anchored on MXene conductive network as outstanding cyclic performance anode for Li/Na-ion batteries. Carbon 2025, 234, 120008.
106. Yu, J.; He, Y.; Li, J.; et al. In-situ rooting biconical-nanorods-like Co-doped FeP @carbon architectures toward enhanced lithium storage performance. Chem. Eng. J. 2023, 477, 146996.
107. Yang, Y.; Xia, J.; Guan, X.; et al. In situ growth of CoP nanosheet arrays on carbon cloth as binder-free electrode for high-performance flexible lithium-ion batteries. Small 2022, 18, 2204970.
108. Turarova, G.; Taniguchi, I.; Bakenov, Z.; Belgibayeva, A. In situ steam oxidation of nickel phosphide/carbon composite nanofibers as anode materials for lithium-ion batteries. J. Power. Sources. 2024, 613, 234933.
109. Li, F.; Gao, J.; He, Z.; Brandon, N.; Li, X.; Kong, L. Engineering novel Ni2-XCoxP structures for high performance lithium-ion storage. Energy. Storage. Materials. 2022, 48, 20-34.
110. Liu, W.; Zhi, H.; Yu, X. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy. Storage. Mater. 2019, 16, 290-322.
111. Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth. 2016, 443, 75-80.
112. Shen, H.; Shi, Y.; Bian, W.; et al. Revisiting the failure mechanism of layered germanium phosphide anode for lithium/sodium-ion batteries: decisive role of mechanical robustness. J. Power. Sources. 2025, 630, 236171.
113. Jiang, Y.; Wang, Y.; Jiang, J.; et al. In-situ solvothermal phosphorization from nano-sized tetragonal-Sn to rhombohedral-Sn4P3 embedded in hollow graphene sphere with high capacity and stability. Electrochim. Acta. 2019, 312, 263-71.
114. Zhang, Y.; Liu, L.; Zhao, L.; et al. Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv. Compos. Hybrid. Mater. 2022, 5, 2601-10.
115. Zhang, D.; Guo, X.; Tong, X.; et al. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide. J. Alloys. Compd. 2020, 837, 155529.
116. He, R.; Wang, X.; Li, J.; Chang, L.; Wang, H.; Nie, P. Engineering ultra-small tin phosphide encapsulated in 3D phosphorous-doped porous carbon nanosheets as high-performance anodes for lithium-ion batteries. Appl. Surf. Sci. 2024, 654, 159532.
117. Liu, L.; Xie, H.; Zheng, Y.; et al. Multicomponent anodes based on amorphous ZnP2 for Fast-charging/discharging lithium-ion batteries. Adv. Energy. Mater. 2025, 15, 2404900.
118. Said, S.; Shutt, R. R. C.; Zhang, Z.; Lovett, A. J.; Howard, C. A.; Miller, T. S. Electrochemical atomic force microscopy of black phosphorus composite anodes: electrode destabilization and degradation mechanisms in alkali-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 43512-25.
119. Zhang, Y.; Wang, L.; Xu, H.; Cao, J.; Chen, D.; Han, W. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 2020, 30, 1909372.
120. Liu, Z.; Yang, S.; Sun, B.; Chang, X.; Zheng, J.; Li, X. A Peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem. Int. Ed. 2018, 57, 10187-91.
121. Sun, J.; Liu, C.; Wang, H.; et al. Core-shell structure of a polypyrrole-coated phosphorus/carbon nanotube anode for high-performance lithium-ion batteries. ACS. Appl. Energy. Mater. 2021, 4, 4112-8.
122. Liu, W.; Yuan, X.; Yu, X. A core-shell structure of polydopamine-coated phosphorus-carbon nanotube composite for high-performance sodium-ion batteries. Nanoscale 2018, 10, 16675-82.
123. Zhang, S.; Wan, Y.; Cao, Y.; et al. Delithiation-accelerating and self-healing strategies realizes high-capacity and high-rate black phosphorus anode in wide temperature range. eScience 2025, 5, 100328.
124. Meng, R.; Huang, J.; Feng, Y.; et al. Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy. Mater. 2018, 8, 1801514.
125. Zheng, W.; Lee, J.; Gao, Z.; et al. Laser-assisted ultrafast exfoliation of black phosphorus in liquid with tunable thickness for Li-ion batteries. Adv. Energy. Mater. 2020, 10, 1903490.
126. Liu, X.; Yu, M.; Wu, S.; Gong, J. Composite nanoarchitectonics for efficient lithium storage by encapsulating black phosphorus quantum dots in cobalt/iron based Prussian blue analogues. J. Alloys. Compd. 2023, 969, 172291.
127. Cui, X.; Chen, J.; Sun, Z.; et al. A general route for encapsulating monodispersed transition metal phosphides into carbon multi-chambers toward high-efficient lithium-ion storage with underlying mechanism exploration. Adv. Funct. Mater. 2023, 33, 2212100.
128. Han, X.; Sun, J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSI based electrolyte. J. Power. Sources. 2020, 474, 228664.
129. Lin, H.; Chen, K.; Chang, C.; Tuan, H. Aluminum phosphide as a high-performance lithium-ion battery anode. J. Power. Sources. 2020, 465, 228262.