REFERENCES

1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

2. Huang, J.; Xie, Y.; You, Y.; et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization. Adv. Funct. Mater. 2023, 33, 2213095.

3. Zhang, Y.; Mei, H. X.; Cao, Y.; et al. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 2021, 438, 213910.

4. Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S. S.; Ha, J. S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020, 32, e2002180.

5. Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 2019, 366, eaan8285.

6. Zhang, Y. Z.; Wang, Y.; Cheng, T.; et al. Printed supercapacitors: materials, printing and applications. Chem. Soc. Rev. 2019, 48, 3229-64.

7. Lethien, C.; Le, B. J.; Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy. Environ. Sci. 2019, 12, 96-115.

8. Tian, Y.; An, Y.; Feng, J.; Qian, Y. MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater. Today. 2022, 52, 225-49.

9. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-35.

10. Salanne, M.; Rotenberg, B.; Naoi, K.; et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy. 2016, 1, 16070.

11. Chen, G. Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 2017, 62, 173-202.

12. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220-4.

13. Zheng, S.; Huang, H.; Dong, Y.; et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy. Environ. Sci. 2020, 13, 821-9.

14. Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151-63.

15. Tan, C.; Cao, X.; Wu, X. J.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-331.

16. Zeraati A, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021, 13, 3572-80.

17. Lipatov, A.; Lu, H.; Alhabeb, M.; et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 4, eaat0491.

18. Maleski, K.; Shuck, C. E.; Fafarman, A. T.; Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 2021, 9, 2001563.

19. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

20. Munkhbat, B.; Yankovich, A. B.; Baranov, D. G.; Verre, R.; Olsson, E.; Shegai, T. O. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 2020, 11, 4604.

21. Zhao, J.; Liu, H.; Yu, Z.; et al. Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.

22. Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M. H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370-87.

23. Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy. Mater. 2019, 9, 1803358.

24. Hu, T.; Gu, Z.; Williams, G. R.; et al. Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 2022, 51, 6126-76.

25. Lin, Z.; Wang, C.; Chai, Y. Emerging group-VI elemental 2D materials: preparations, properties, and device applications. Small 2020, 16, e2003319.

26. Qiu, M.; Ren, W. X.; Jeong, T.; et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588-601.

27. Lin, Z.; Li, X.; Zhang, H.; et al. Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg. Chem. Front. 2023, 10, 4358-92.

28. Lamiel, C.; Hussain, I.; Warner, J. H.; Zhang, K. Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications. Mater. Today. 2023, 63, 313-38.

29. Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS. Nano. 2019, 13, 8491-4.

30. Naguib, M.; Kurtoglu, M.; Presser, V.; et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-53.

31. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 1-17.

32. Sinha, A.; Dhanjai; Zhao, H.; et al. MXene: an emerging material for sensing and biosensing. TrAC. Trends. Anal. Chem. 2018, 105, 424-35.

33. Hantanasirisakul, K.; Zhao, M. Q.; Urbankowski, P.; et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Elect. Mater. 2016, 2, 1600050.

34. Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, e1804779.

35. Huang, H.; Jiang, R.; Feng, Y.; et al. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325-38.

36. Gao, G.; O’mullane, A. P.; Du, A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS. Catal. 2017, 7, 494-500.

37. Yang, R.; Fan, Y.; Mei, L.; et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2023, 2, 101-18.

38. Li, J.; Ye, F.; Vaziri, S.; Muhammed, M.; Lemme, M. C.; Östling, M. Efficient inkjet printing of graphene. Adv. Mater. 2013, 25, 3985-92.

39. Li, J.; Sollami, D. S.; Zhang, P.; et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS. Nano. 2017, 11, 8249-56.

40. Jun, H. Y.; Ryu, S. O.; Kim, S. H.; et al. Inkjet printing of few-layer enriched black phosphorus nanosheets for electronic devices. Adv. Elect. Mater. 2021, 7, 2100577.

41. Li, L.; Meng, J.; Bao, X.; et al. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy. Mater. 2023, 13, 2203683.

42. Shao, Y.; Wei, L.; Wu, X.; et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 13, 3223.

43. Zhu, Q.; Li, J.; Simon, P.; Xu, B. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy. Stor. Mater. 2021, 35, 630-60.

44. Azadmanjiri, J.; Reddy, T. N.; Khezri, B.; et al. Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. J. Mater. Chem. A. 2022, 10, 4533-57.

45. Vural, M.; Pena-Francesch, A.; Bars-Pomes, J.; et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 2018, 28, 1801972.

46. Jiang, X.; Li, W.; Hai, T.; et al. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. NPJ. 2D. Mater. Appl. 2019, 3, 34.

47. Yu, Z.; Deng, C.; Sun, J.; et al. Cellulosic nonwovens incorporated with fully utilized MXene precursor as smart pressure sensor and multi-protection materials. Adv. Funct. Mater. 2024, 2402707.

48. Wu, H.; Xie, Y.; Ma, Y.; et al. Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 2022, 18, e2107087.

49. Pan, S.; Yin, J.; Yu, L.; et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 2020, 7, 1901511.

50. Cao, W. T.; Ma, C.; Mao, D. S.; Zhang, J.; Ma, M. G.; Chen, F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 2019, 29, 1905898.

51. Zhang, C.; Kremer, M. P.; Seral-Ascaso, A.; et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

52. Zhang, C. J.; McKeon, L.; Kremer, M. P.; et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

53. Zhang, Y. Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J. K.; Kim, H.; Alshareef, H. N. MXene printing and patterned coating for device applications. Adv. Mater. 2020, 32, e1908486.

54. Akuzum, B.; Maleski, K.; Anasori, B.; et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS. Nano. 2018, 12, 2685-94.

55. Xu, S.; Dall’Agnese, Y.; Wei, G.; Zhang, C.; Gogotsi, Y.; Han, W. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano. Energy. 2018, 50, 479-88.

56. Zheng, S.; Ma, J.; Fang, K.; et al. High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system. Adv. Energy. Mater. 2021, 11, 2003835.

57. Zheng, S.; Wang, H.; Das, P.; et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, e2005449.

58. Zhang, Y.; Wang, L.; Zhao, L.; et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv. Mater. 2021, 33, e2007890.

59. Levitt, A.; Hegh, D.; Phillips, P.; et al. 3D knitted energy storage textiles using MXene-coated yarns. Mater. Today. 2020, 34, 17-29.

60. Jiang, Q.; Kurra, N.; Maleski, K.; et al. On-chip MXene microsupercapacitors for AC-line filtering applications. Adv. Energy. Mater. 2019, 9, 1901061.

61. Hong, S. Y.; Sun, Y.; Lee, J.; et al. 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding. Polymer 2021, 236, 124312.

62. Geng, D.; Zhao, X.; Chen, Z.; et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072.

63. Geng, D.; Zhao, X.; Li, L.; et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D. Mater. 2017, 4, 011012.

64. Wang, D.; Zhou, C.; Filatov, A. S.; et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242-7.

65. Xiang, M.; Shen, Z.; Zheng, J.; et al. Gas-phase synthesis of Ti2CCl2 enables an efficient catalyst for lithium-sulfur batteries. Innovation 2024, 5, 100540.

66. Alhabeb, M.; Maleski, K.; Mathis, T. S.; et al. Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene). Angewe. Chem. Intl. Ed. 2018, 130, 5542-6.

67. Wang, L.; Zhang, H.; Wang, B.; et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12, 702-10.

68. Li, T.; Yan, X.; Huang, L.; et al. Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions. J. Mater. Chem. A. 2019, 7, 14462-5.

69. Li, Y.; Shao, H.; Lin, Z.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894-9.

70. Pang, S. Y.; Wong, Y. T.; Yuan, S.; et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610-6.

71. Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Fundamentals of MXene synthesis. Nat. Synth. 2022, 1, 601-14.

72. Barsoum, M. W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog. Solid. State. Chem. 2000, 28, 201-81.

73. Mathis, T. S.; Maleski, K.; Goad, A.; et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS. Nano. 2021, 15, 6420-9.

74. VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

75. Khaledialidusti, R.; Khazaei, M.; Khazaei, S.; Ohno, K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 2021, 13, 7294-307.

76. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014, 516, 78-81.

77. Li, T.; Yao, L.; Liu, Q.; et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Inter. Ed. 2018, 57, 6115-9.

78. Li, M.; Lu, J.; Luo, K.; et al. Element Replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730-7.

79. Li, M.; Li, X.; Qin, G.; et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS. Nano. 2021, 15, 1077-85.

80. Naguib, M.; Unocic, R. R.; Armstrong, B. L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". Dalton. Trans. 2015, 44, 9353-8.

81. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 2014, 26, 992-1005.

82. Alhabeb, M.; Maleski, K.; Anasori, B.; et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-44.

83. Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632-40.

84. Al-Temimy, A.; Anasori, B.; Mazzio, K. A.; et al. Enhancement of Ti3C2 MXene pseudocapacitance after urea intercalation studied by soft X-ray absorption spectroscopy. J. Phys. Chem. C. 2020, 124, 5079-86.

85. Mashtalir, O.; Naguib, M.; Mochalin, V. N.; et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.

86. Xu, J.; Peng, T.; Zhang, Q.; Zheng, H.; Yu, H.; Shi, S. Intercalation effects on the electrochemical properties of Ti3C2Tx MXene nanosheets for high-performance supercapacitors. ACS. Appl. Nano. Mater. 2022, 5, 8794-803.

87. Li, J.; Yuan, X.; Lin, C.; et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy. Mater. 2017, 7, 1602725.

88. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Elect. Mater. 2016, 2, 1600255.

89. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-40.

90. Greaves, M.; Mende, M.; Wang, J.; Yang, W.; Barg, S. Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: progress and challenges. J. Mater. Res. 2021, 36, 4578-600.

91. Abdolhosseinzadeh, S.; Jiang, X.; Zhang, H.; Qiu, J.; Zhang, C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today. 2021, 48, 214-40.

92. Uzun, S.; Schelling, M.; Hantanasirisakul, K.; et al. Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small 2021, 17, 2006376.

93. Quain, E.; Mathis, T. S.; Kurra, N.; et al. Direct writing of additive-free MXene-in-water ink for electronics and energy storage. Adv. Mater. Technol. 2019, 4, 1800256.

94. Robertson, G. L. Food packaging: principles and practice, third edition. CRC press; 2005. p. 733.

95. Hu, G.; Albrow-Owen, T.; Jin, X.; et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

96. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

97. Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy. Environ. Sci. 2014, 7, 867.

98. Peng, Y. Y.; Akuzum, B.; Kurra, N.; et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy. Environ. Sci. 2016, 9, 2847-54.

99. Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano. Energy. 2015, 13, 500-8.

100. Wang, N.; Liu, J.; Zhao, Y.; Hu, M.; Qin, R.; Shan, G. Laser-cutting fabrication of Mxene-based flexible micro-supercapacitors with high areal capacitance. ChemNanoMat 2019, 5, 658-65.

101. Li, X.; Chen, R.; Zhao, Y.; et al. Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors. Chem. Eng. J. 2019, 375, 121988.

102. Ng, L. W. T.; Hu, G.; Howe, R. C. T.; et al. Printing of graphene and related 2D materials: technology, formulation and applications. Cham: Springer International Publishing; 2019. p. 220.

103. Wu, C. W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H. T.; Huang, C. C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy. Stor. Mater. 2020, 25, 563-71.

104. Wen, D.; Ying, G.; Liu, L.; et al. Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. J. Alloys. Compd. 2022, 900, 163436.

105. Yu, L.; Fan, Z.; Shao, Y.; Tian, Z.; Sun, J.; Liu, Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy. Mater. 2019, 9, 1901839.

106. Zhou, G.; Li, M. C.; Liu, C.; Wu, Q.; Mei, C. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593.

107. Yuan, M.; Wang, L.; Liu, X.; et al. 3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chem. Eng. J. 2023, 451, 138686.

108. Wen, D.; Ying, G.; Liu, L.; et al. Flexible and high-performance MXene/MnO2 film electrodes fabricated by inkjet printing: toward a new generation supercapacitive application. Adv. Mater. Inter. 2021, 8, 2101453.

109. Sun, P.; Liu, J.; Liu, Q.; et al. An inkjet-printing ink based on porous NiS/N-MXene for high-performance asymmetric micro-supercapacitors and self-powered microelectronics. Chem. Eng. J. 2023, 474, 145466.

110. Sangili, A.; Unnikrishnan, B.; Nain, A.; et al. Stable carbon encapsulated titanium carbide MXene aqueous ink for fabricating high-performance supercapacitors. Energy. Stor. Mater. 2022, 53, 51-61.

111. Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS. Nano. 2019, 14, 640-50.

112. Zhao, J.; Lu, H.; Wei, X.; Gao, Y.; Song, Y.; Xu, B. Direct writing additive-free V2CTx MXene architectures enables Zn-ion hybrid capacitor with ultrahigh energy density. J. Energy. Stor. 2023, 66, 107481.

113. Wen, D.; Wang, X.; Liu, L.; et al. Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS. Appl. Mater. Interfaces. 2021, 13, 17766-80.

114. Alam, A.; Saeed, G.; Kim, K. W.; Kim, J. K.; Park, H. S.; Lim, S. Direct ink writing (DIW) printed high-performance asymmetric supercapacitor based on 0D@2D silver-nanoparticles@MXene as anode and 0D@2D MnO2-nanoparticles@MXene as cathode materials. J. Energy. Stor. 2023, 72, 108227.

115. Abdolhosseinzadeh, S.; Heier, J.; Zhang, C. Coating porous MXene films with tunable porosity for high-performance solid-state supercapacitors. ChemElectroChem 2021, 8, 1911-7.

116. Zhang, S.; Huang, Y.; Ruan, Y.; Wang, J.; Han, X.; Sun, X. Electrostatic self-assembly of citrus based carbon nanosheets and MXene: flexible film electrodes and patterned interdigital electrodes for all-solid supercapacitors. J. Energy. Stor. 2023, 58, 106392.

117. Li, L.; Zhang, N.; Zhang, M.; Zhang, X.; Zhang, Z. Flexible Ti3C2Tx/PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton. Trans. 2019, 48, 1747-56.

118. Wang, Y.; Zhang, Y. Z.; Dubbink, D.; ten Elshof, J. E. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano. Energy. 2018, 49, 481-8.

119. McManus, D.; Vranic, S.; Withers, F.; et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343-50.

120. Torrisi, F.; Hasan, T.; Wu, W.; et al. Inkjet-printed graphene electronics. ACS. Nano. 2012, 6, 2992-3006.

121. Pereira, N. M.; Rezende, N. P.; Cunha, T. H. R.; et al. Aerosol-printed MoS2 ink as a high sensitivity humidity sensor. ACS. Omega. 2022, 7, 9388-96.

122. Carey, T.; Cacovich, S.; Divitini, G.; et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.

123. Reis, N.; Derby, B. Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS. Proc. 2000, 625, S1946427400193224.

124. Ma, J.; Zheng, S.; Cao, Y.; et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy. Mater. 2021, 11, 2100746.

125. Zhang, C. J.; Pinilla, S.; McEvoy, N.; et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848-56.

126. Ataide, V. N.; Mendes, L. F.; Gama, L. I. L. M.; de, A. W. R.; Paixão, T. R. L. C. Electrochemical paper-based analytical devices: ten years of development. Anal. Methods. 2020, 12, 1030-54.

127. Somalu, M. R.; Muchtar, A.; Daud, W. R. W.; Brandon, N. P. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renew. Sustain. Energy. Rev. 2017, 75, 426-39.

128. Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. J. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, e2000716.

129. Hussain, I.; Lamiel, C.; Javed, M. S.; et al. MXene-based heterostructures: current trend and development in electrochemical energy storage devices. Progr. Energy. Combust. Sci. 2023, 97, 101097.

130. Li, H.; Li, X.; Liang, J.; Chen, Y. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy. Mater. 2019, 9, 1803987.

131. Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24, 5284-318.

132. Xu, B.; Zhu, M.; Zhang, W.; et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 2016, 28, 3333-9.

133. Zhang, Y.; Shi, G.; Qin, J.; et al. Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS. Appl. Electron. Mater. 2019, 1, 1718-34.

134. Yang, W.; Yang, J.; Byun, J. J.; et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, e1902725.

135. Li, X.; Li, H.; Fan, X.; Shi, X.; Liang, J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy. Mater. 2020, 10, 1903794.

136. Wang, J.; Ma, X.; Zhou, J.; Du, F.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS. Nano. 2022, 16, 6700-11.

137. Zhou, B.; Su, M.; Yang, D.; et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS. Appl. Mater. Interfaces. 2020, 12, 40859-69.

138. Ma, Z.; Kang, S.; Ma, J.; et al. Ultraflexible and mechanically strong double-layered aramid nanofiber- Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS. Nano. 2020, 14, 8368-82.

139. Xie, Y.; Zhang, H.; Huang, H.; et al. High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano. Energy. 2020, 74, 104928.

140. Patil, G. C. Doctor blade: a promising technique for thin film coating. Singapore: Springer; 2023. pp. 509-30.

141. Guo, T.; Zhou, D.; Deng, S.; et al. Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS. Nano. 2023, 17, 3737-49.

142. Guo, T.; Zhou, D.; Gao, M.; et al. Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Adv. Funct. Mater. 2023, 33, 2213183.

143. Huang, X.; Wu, P. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.

144. Lucero, N.; Vilcarino, D.; Datta, D.; Zhao, M. Q. The roles of MXenes in developing advanced lithium metal anodes. J. Energy. Chem. 2022, 69, 132-49.

145. Zheng, J.; Kim, M. S.; Tu, Z.; Choudhury, S.; Tang, T.; Archer, L. A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020, 49, 2701-50.

146. Fan, X.; Chen, L.; Borodin, O.; et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715-22.

147. Shen, K.; Li, B.; Yang, S. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy. Stor. Mater. 2020, 24, 670-5.

148. Chen, Q.; Wei, Y.; Zhang, X.; et al. Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes. Adv. Energy. Mater. 2022, 12, 2200072.

149. Ma, J.; Zheng, S.; Zhou, F.; et al. All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density. Energy. Stor. Mater. 2023, 54, 304-12.

150. Zhang, X.; Kong, D.; Li, X.; Zhi, L. Dimensionally designed carbon-silicon hybrids for lithium storage. Adv. Funct. Mater. 2019, 29, 1806061.

151. Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 110-35.

152. Zhang, C. J.; Park, S. H.; Seral-Ascaso, A.; et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 2019, 10, 849.

153. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy. 2016, 1, 1-11.

154. Tang, H.; Li, W.; Pan, L.; et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

155. Wei, C.; Tian, M.; Fan, Z.; et al. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy. Stor. Mater. 2021, 41, 141-51.

156. Wang, Y.; Lubbers, T.; Xia, R.; et al. Printable two-dimensional V2O5/MXene heterostructure cathode for lithium-ion battery. J. Electrochem. Soc. 2021, 168, 020507.

157. Zhang, C.; Zhao, W.; Park, S. H.; et al. Interconnected metallic membrane enabled by MXene inks toward high-rate anode and high-voltage cathode for Li-ion batteries. Adv. Funct. Mater. 2023, 33, 2213860.

158. Chen, D.; Long, Y.; Wu, Z.; et al. A gelation-assisted approach for versatile MXene inks. Adv. Funct. Mater. 2022, 32, 2204372.

159. Park, J. M.; Jana, M.; Baek, S. H.; et al. MXene ink hosting zinc anode for high performance aqueous zinc metal batteries. J. Energy. Chem. 2023, 76, 187-94.

160. Wang, Z.; Huang, Z.; Wang, H.; et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS. Nano. 2022, 16, 9105-16.

161. Zheng, J.; Diao, J.; Jin, Y.; et al. An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. J. Electrochem. Soc. 2018, 165, B227-31.

162. Su, Y.; Liu, B.; Zhang, Q.; et al. Printing-scalable Ti3C2Tx MXene-decorated janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 2022, 32, 2204306.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/