REFERENCES
1. Stellacci S, Rato V, Poletti E. Structural permanence in pre- and post-earthquake lisbon: half-timbered walls in overhanging dwellings and in Pombalino buildings. Int J Architect Herit 2016;11:363-81.
2. Bernardo V, Costa CA, Candeias P, Costa A, Lourenço P. Analytical seismic fragility curves for ancient masonry buildings in Portugal. Zagreb, Croatia; 2023.
3. Margesson R, Taft-Morales M. Haiti earthquake: crisis and response. 2010. Available from: https://www.everycrsreport.com/files/20100308_R41023_ef960f2289f3fff5c83e5c956e08a84e9f45f747.pdf [Last accessed on 26 Nov 2024].
5. Mavrouli M, Mavroulis S, Lekkas E, Tsakris A. An emerging health crisis in Turkey and Syria after the earthquake disaster on 6 february 2023: risk factors, prevention and management of infectious diseases. Healthcare 2023;11:1022.
6. John EH. Disaster risk reduction and climate change adaptation in the Pacific: an institutional and policy analysis; 2012. Available from: https://www.undrr.org/publication/disaster-risk-reduction-and-climate-change-adaptation-pacific-institutional-and-policy [Last accessed on 28 Nov 2024].
7. Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 2006;43:75-104. Available from: https://www.researchgate.net/publication/241826044_Development_of_seismic_vulnerability_assessment_methodologies_over_the_past_30_years [Last accessed on 26 Nov 2024]
8. Ahmed S, Abarca A, Perrone D, Monteiro R. Large-scale seismic assessment of RC buildings through rapid visual screening. Int J Disaster Risk Reduct 2022;80:103219.
9. Aguado JLP, Ferreira TM, Lourenço PB. The use of a large-scale seismic vulnerability assessment approach for masonry façade walls as an effective tool for evaluating, managing and mitigating seismic risk in historical centers. Int J Architect Herit 2018;12:1259-75.
10. Formisano A, Florio G, Landolfo R, Mazzolani FM. Numerical calibration of an easy method for seismic behaviour assessment on large scale of masonry building aggregates. Adv Eng Softw 2015;80:116-38.
11. Mehralian H, Azarbakht A. Seismic loss assessment: the case study of the power distribution network in Arak city, Iran. J Civ Eng Mater Appl 2020;4:195-207.
12. Tatangelo M, Audisio L, D’Amato M, Gigliotti R. Issues related to typological fragility curves derivation starting from observed seismic damage. Eng Struct 2024;307:117853.
13. Porter K, Kennedy R, Bachman R. Creating fragility functions for performance-based earthquake engineering. Earthq Spectra 2007;23:471-89. Available from: https://www.sparisk.com/pubs/Porter-2007-deriving-fragility.pdf [Last accessed on 26 Nov 2024]
14. Rota M, Penna A, Magenes G. A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Eng Struct 2010;32:1312-23.
15. Vilanova SP, Fonseca JFBD. Probabilistic seismic-hazard assessment for Portugal. Bull Seismol Soc Am 2007;97:1702-17.
16. Dynes RR. The Lisbon earthquake in 1755: the first modern disaster; 2003. Available from: http://udspace.udel.edu/handle/19716/294 [Last accessed on 26 Nov 2024].
17. Oliveira CS. Historical seismicity and revision of the seismic catalogue. LNEC; 1986. (In portuguese)
18. Chester DK, Chester OK. The impact of eighteenth century earthquakes on the Algarve region, southern Portugal. Geogr J 2010;176:350-70.
19. Silva V, Crowley H, Varum H, Pinho R. Seismic risk assessment for mainland Portugal. Bull Earthq Eng 2015;13:429-57.
20. Statistics IN from census data. Lisbon; 2011. In Portuguese. Available from: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=73212469&PUBLICACOESmodo=2 [Last accessed on 28 Nov 2024].
21. Simões AGG. Evaluation of the seismic vulnerability of the unreinforced masonry buildings constructed in the transition between the 19th and 20th centuries in Lisbon, Portugal; 2018. Available from: https://ceris.pt/wp-content/uploads/2024/05/2018_RG6_Rita-Bento-Ana-Simoes.pdf [Last accessed on 26 Nov 2024].
22. Erberik MA. Generation of fragility curves for Turkish masonry buildings considering in-plane failure modes. Earthq Engng Struct Dyn 2008;37:387-405.
23. Borzi B, Crowley H, Pinho R. Simplified pushover-based earthquake loss assessment (SP-BELA) method for masonry buildings. Int J Architect Herit 2008;2:353-76.
24. Costa AC, Sousa ML, Carvalho A, Coelho E. Evaluation of seismic risk and mitigation strategies for the existing building stock: application of LNECloss to the metropolitan area of Lisbon. Bull Earthq Eng 2010;8:119-34.
25. Milosevic J, Bento R, Cattari S. Seismic behavior of lisbon mixed masonry-RC buildings with historical value: a contribution for the practical assessment. Front Built Environ 2018;4:43.
26. Simões A, Milošević J, Meireles H, Bento R, Cattari S, Lagomarsino S. Fragility curves for old masonry building types in Lisbon. Bull Earthq Eng 2015;13:3083-105.
27. Mosoarca M, Onescu I, Onescu E, Anastasiadis A. Seismic vulnerability assessment methodology for historic masonry buildings in the near-field areas. Eng Fail Anal 2020;115:104662.
28. Lagomarsino S. On the vulnerability assessment of monumental buildings. Bull Earthq Eng 2006;4:445-63.
29. Lagomarsino S, Cattari S, Ottonelli D. The heuristic vulnerability model: fragility curves for masonry buildings. Bull Earthq Eng 2021;19:3129-63.
30. Chieffo N, Formisano A, Landolfo R, Milani G. A vulnerability index based-approach for the historical centre of the city of Latronico (Potenza, Southern Italy). Eng Fail Anal 2022;136:106207.
31. Bramerini F, Castenetto S, Cubellis E, Martini MG, Rebuffat M, Soddu P. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake. 1995. Available from: http://hdl.handle.net/2122/1798 [Last accessed on 26 Nov 2024].
32. ReSist. Informações E Serviços. Câmara Municipal de Lisboa; 2023. Available from: https://informacoeseservicos.lisboa.pt/prevencao/resiliencia-urbana/projetos/resist [Last accessed on 26 Nov 2024].
33. Pinto C, Ferreira MA, Pacheco P, et al. The resist programme: Lisbon strategy for seismic resilience. In 18th World Conference on Earthquake Engineering (WCEE2024), 30 June-5 July 2024; Milan, Italy. Available from: https://www.researchgate.net/publication/382159159_THE_RESIST_PROGRAMME_LISBON_STRATEGY_FOR_SEISMIC_RESILIENCE [Last accessed on 26 Nov 2024].
34. Oliveira CS, Lopes M, Mota de Sá F, et al. New steps towards a simple model of the building stock and corresponding seismic vulnerabilities: situations of great similarity of buildings and cases of poor consistency. In 18th World Conference on Earthquake Engineering (WCEE2024), 30 June-5 July 2024; Milan, Italy. Available from: https://www.researchgate.net/publication/382160580_New_steps_towards_a_simple_model_of_the_building_stock_and_corresponding_seismic_vulnerabilities_Situations_of_great_similarity_of_buildings_and_cases_of_poor_consistency [Last accessed on 30 Nov 2024].
35. MOREIRA VS. Seismicity of the Portuguese continental margin. 1989; pp. 533-45. Available from: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7229218 [Last accessed on 26 Nov 2024].
36. Lisboa AMD. Mapa das freguesias de Lisboa; 2022. Available from: https://www.am-lisboa.pt/451600/1/009001,000531/index.htm [Last accessed on 26 Nov 2024].
37. Sá L, Morales-Esteban A, Durand Neyra P. The 1531 earthquake revisited: loss estimation in a historical perspective. Bull Earthq Eng 2018;16:4533-59.
38. Teves-Costa P, Batlló J, Matias L, Catita C, Jiménez MJ, García-Fernández M. Maximum intensity maps (MIM) for Portugal mainland. J Seismol 2019;23:417-40.
39. Gögen B, Karimzadeh S, Lourenço PB. Probabilistic seismic hazard assessment of Lisbon (Portugal). GeoHazards 2024;5:932-70.
40. Ferrão C, Bezzeghoud M, Caldeira B, Borges JF. The seismicity of Portugal and its adjacent atlantic region from 1300 to 2014: maximum observed intensity (MOI) map. Seismol Res Lett 2016;87:743-50.
41. Araãºjo AC. The 1755 Lisbon earthquake: the catastrophe and the reconstruction. Storicamente 2021:17.
42. Google Earth. Available from: https://earth.google.com [Last accessed on 26 Nov 2024].
43. Environmental Systems Research Institute. ArcGIS version 10.8.1; 2020. Available from: https://www.arcgis.com/index.html [Last accessed on 28 Nov 2024].
44. Bernardo V, Sousa R, Candeias P, Costa A, Campos Costa A. Historic appraisal review and geometric characterization of old masonry buildings in Lisbon for seismic risk assessment. Int J Archit Herit 2022;16:1921-41.
45. Grunthal G. European macroseismic scale. Centre Europèen de Géodynamique et de Séismologie; 1998. Available from: https://media.gfz-potsdam.de/gfz/sec26/resources/documents/PDF/EMS-98_Original_englisch.pdf [Last accessed on 28 Nov 2024].
46. Formisano A. Theoretical and numerical seismic analysis of masonry building aggregates: case studies in San Pio Delle Camere (L’Aquila, Italy). J Earthq Eng 2017;21:227-45.
47. Basaglia A, Cianchino G, Cocco G, et al. An automatic procedure for deriving building portfolios using the Italian “CARTIS” online database. Structures 2021;34:2974-86.
48. Mosoarca M, Onescu I, Onescu E, Azap B, Chieffo N, Szitar-Sirbu M. Seismic vulnerability assessment for the historical areas of the Timisoara city, Romania. Eng Fail Anal 2019;101:86-112.
49. Vicente R, Parodi S, Lagomarsino S, Varum H, Silva JARM. Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthq Eng 2011;9:1067-96.
50. Chieffo N, Formisano A, Lourenço PB. Seismic vulnerability procedures for historical masonry structural aggregates: analysis of the historical centre of Castelpoto (South Italy). Structures 2023;48:852-66.
51. Python programming Language. Version 3.6.8. Python software foundation. Available from: http://www.python.org/ [Last accessed on 26 Nov 2024].
52. Moritz M. Vulnerability-index-method. GitHub; 2023. Available from: https://github.com/masonmoritz/Vulnerability-Index-Method-SAHC [Last accessed on 26 Nov 2024].
53. Oliveira CS. Lisbon earthquake scenarios: a review on uncertainties, from earthquake source to vulnerability modelling. Soil Dyn Earthq Eng 2008;28:890-913.
54. Lantada N, Pujades LG, Barbat AH. Earthquake risk scenarios in urban areas: a review with applications to the Ciutat Vella district in Barcelona, Spain. Int J Architect Herit 2018;12:1112-30.
55. Lucantoni A, Bosi V, Bramerini F, et al. Seismic risk in Italy (In Italian). Ingegneria Sismica; 2001, pp. 5-36. Available from: https://www.researchgate.net/publication/313419051_Seismic_risk_in_Italy [Last accessed on 30 Nov 2024]
56. Vicente R, Ferreira T, Maio R. Seismic risk at the urban scale: assessment, mapping and planning. Proc Econ Financ 2014;18:71-80.
57. Yousfi N, Mounir AB, Boukri M, Guessoum N, Bensaibi M. Seismic resilience assessment of buildings: case study of Blida city; 2022. Available from: https://www.researchsquare.com/article/rs-2137910/v1 [Last accessed on 26 Nov 2024].
58. Xofi M, Ferreira TM, Domingues JC, et al. On the seismic vulnerability assessment of urban areas using census data: the Lisbon metropolitan area as a pilot study area. J Earthq Eng 2024;28:242-65.
59. Barchetta L, Petrucci E, Xavier V, Bento R. A simplified framework for historic cities to define strategies aimed at implementing resilience skills: the case of Lisbon downtown. Buildings 2023;13:130.