REFERENCES

1. Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155-74.

2. Liu, Y.; Guo, C.; Wu, G.; et al. Uniformly dispersed bismuth metal nano catalyst modified carbon cloth electrode for iron-chromium flow battery. Nano. Res. Energy. 2025, 4, e9120135.

3. Talib, S. H.; Jiang, X.; Feng, S.; Zhao, M.; Yu, Q. Theoretical catalytic performance of single-atom catalysts M1/PW12O40 for alkyne hydrogenation materials. Nano. Res. Energy. 2024, 3, e9120128.

4. Li, J.; Zhang, L.; Doyle-Davis, K.; Li, R.; Sun, X. Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon. Energy. 2020, 2, 488-520.

5. Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat 2023, 4, e1136.

6. Wei, Z.; Zhu, Y.; Liu, J.; et al. Recent advance in single-atom catalysis. Rare. Met. 2021, 40, 767-89.

7. Zheng, X.; Li, P.; Dou, S.; et al. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy. Environ. Sci. 2021, 14, 2809-58.

8. Li, Z.; Chen, Y.; Ji, S.; et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764-72.

9. Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900-55.

10. Yu, X.; Wang, D.; Peng, Q.; Li, Y. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094-6.

11. Liang, G.; Yang, S.; Wu, C.; et al. Advancing C–C coupling of the electrocatalytic CO2 reduction reaction for C2+ products. J. Mater. Chem. A. 2025, 13, 11210-35.

12. Zhang, X.; Zhang, X.; Wang, X.; Cui, G.; Pan, H.; Sun, W. Engineering spin states of metal sites toward advanced lithium–sulfur batteries. Energy. Environ. Sci. 2025, 18, 3553-67.

13. Guo, Q.; Kong, F.; Yu, X.; et al. An inter-atomic synergistic Co–Zn diatomic catalyst for efficient H2O2 electrosynthesis in neutral and alkaline media. Green. Chem. 2025, 27, 3032-43.

14. Yang, Q.; Liu, H.; Yuan, P.; et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171-8.

15. Tang, C.; Jiao, Y.; Shi, B.; et al. Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. Engl. 2020, 59, 9171-6.

16. Qu, Z.; He, G.; Zhang, T.; et al. Tricoordinated single-atom cobalt in zeolite boosting propane dehydrogenation. J. Am. Chem. Soc. 2024, 146, 8939-48.

17. Pan, F.; Zhang, H.; Liu, K.; et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS. Catal. 2018, 8, 3116-22.

18. Zhou, X.; Tamtaji, M.; Zhou, W.; Goddard, W. A. 3rd.; Chen, G. Nonprecious triple-atom catalysts with ultrahigh activity for electrochemical reduction of nitrate to ammonia: a DFT screening. ACS. Appl. Mater. Interfaces. 2025, 17, 4854-64.

19. Zhang, J.; Song, Z.; Yao, X.; et al. Precisely constructing asymmetric triple atoms for highly efficient electrocatalysis. Chem. 2025, In Press.

20. Li, Y.; Liu, Y.; Guo, M.; et al. Advances in atomically dispersed catalysts for water splitting. Adv. Funct. Mater. 2025, 35, 2425056.

21. Chen, Z.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A. 2019, 7, 3492-515.

22. Gu, J.; Jian, M.; Huang, L.; et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 2021, 16, 1141-9.

23. Pei, W.; Zhou, S.; Zhao, J.; Xu, X.; Du, Y.; Dou, S. X. Immobilized trimeric metal clusters: a family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano. Energy. 2020, 76, 105049.

24. Gao, Q.; Pillai, H. S.; Huang, Y.; et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.

25. Liu, J.; Xu, H.; Zhu, J.; Cheng, D. Understanding the pathway switch of the oxygen reduction reaction from single- to double-/triple-atom catalysts: a dual channel for electron acceptance-backdonation. JACS. Au. 2023, 3, 3031-44.

26. Cui, C.; Zhang, H.; Cheng, R.; Huang, B.; Luo, Z. On the nature of three-atom metal cluster catalysis for N2 reduction to ammonia. ACS. Catal. 2022, 12, 14964-75.

27. Zhang, D.; Gong, L.; Ma, J.; Wang, X.; Zhang, L.; Xia, Z. Disperse multimetal atom-doped carbon as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions: design strategies. J. Phys. Chem. C. 2020, 124, 27387-95.

28. Chen, S.; Zhang, T.; Han, J.; et al. Interface engineering of Fe-Sn-Co sulfide/oxyhydroxide heterostructural electrocatalyst for synergistic water splitting. Nano. Res. Energy. 2024, 3, e9120106.

29. Zhang, F.; Gong, L.; Liu, M.; et al. Nature of C-C coupling and strategy of tuning the catalytic activity of Cu-N-C catalysts for electro-reduction of CO2 to ethanol. Nano. Energy. 2024, 127, 109699.

30. Yu, Z.; Gu, M.; Wang, Y.; Li, H.; Chen, Y.; Wei, L. Recent progress of electrochemical nitrate reduction to ammonia on copper-based catalysts: from nanoparticles to single atoms. Adv. Energy. Sustain. Res. 2024, 5, 2300284.

31. Liu, C.; Liu, J. Computational study on graphdiyne supported PdxCuy clusters as potential catalysts for formic acid dehydrogenation. Int. J. Hydrogen. Energy. 2024, 79, 248-57.

32. Guo, Q.; Yuan, R.; Zhao, Y.; Yu, Y.; Fu, J.; Cao, L. Performance of nitrogen-doped carbon nanoparticles carrying FeNiCu as bifunctional electrocatalyst for rechargeable zinc-air battery. Small 2024, 20, e2400830.

33. Li, H.; Wang, P.; Zhu, C.; et al. Triple-helical self-assembly of atomically precise nanoclusters. J. Am. Chem. Soc. 2022, 144, 23205-13.

34. Ji, S.; Chen, Y.; Fu, Q.; et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795-8.

35. Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

36. Ye, W.; Chen, S.; Lin, Y.; et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865-78.

37. Ji, S.; Chen, Y.; Zhao, S.; et al. Atomically dispersed ruthenium species inside metal-organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. Engl. 2019, 58, 4271-5.

38. Dasgupta, A.; He, H.; Gong, R.; et al. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523-9.

39. Guo, X.; Shi, J.; Li, M.; et al. Modulating coordination of iron atom clusters on N,P,S triply-doped hollow carbon support towards enhanced electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202314124.

40. Yan, X.; Liu, D.; Guo, P.; et al. Atomically dispersed Co2MnN8 triatomic sites anchored in N-doped carbon enabling efficient oxygen reduction reaction. Adv. Mater. 2023, 35, e2210975.

41. Kumari, S.; Alexandrova, A. N.; Sautet, P. Nature of zirconia on a copper inverse catalyst under CO2 hydrogenation conditions. J. Am. Chem. Soc. 2023, 145, 26350-62.

42. Liu, J.; Xiao, H.; Zhao, X.; et al. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts. CCS. Chem. 2023, 5, 152-63.

43. Chen, C.; Chai, J.; Sun, M.; et al. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction. Energy. Environ. Sci. 2024, 17, 2298-308.

44. Pan, F.; Fang, L.; Li, B.; et al. N and OH-immobilized Cu3 clusters in situ reconstructed from single-metal sites for efficient CO2 electromethanation in bicontinuous mesochannels. J. Am. Chem. Soc. 2024, 146, 1423-34.

45. Cai, G.; Lv, H.; Zhang, G.; et al. A volcano correlation between catalytic activity for sulfur reduction reaction and Fe atom count in metal center. J. Am. Chem. Soc. 2024, 146, 13055-65.

46. Ma, C.; Feng, J.; Xia, C.; et al. Theoretical insights into multi-metal atoms embedded nitrogen-doped graphene as efficient bifunctional catalysts for oxygen reduction and evolution reactions. Appl. Surf. Sci. 2022, 605, 154714.

47. Wang, H.; Li, J.; Zhu, H. Ultimate structures in catalysis: single atoms, subnano-clusters, and electrons. Sci. China. Mater. 2023, 66, 4521-41.

48. Jiao, L.; Jiang, H. Metal-organic frameworks for catalysis: fundamentals and future prospects. Chin. J. Catal. 2023, 45, 1-5.

49. Wu, R.; Sun, M.; Liu, X.; et al. Oxidase-like ZnCoFe three-atom nanozyme as a colorimetric platform for ascorbic acid sensing. Anal. Chem. 2022, 94, 14308-16.

50. Xing, D.; Xu, C.; Wang, Y.; Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C. 2019, 123, 10494-500.

51. Pei, W.; Hou, L.; Yu, X.; et al. Graphitic carbon nitride supported trimeric metal clusters as electrocatalysts for N2 reduction reaction. J. Catal. 2024, 429, 115232.

52. Qiao, F. Photoelectrocatalytic hydrogen production: hydrogen production principle, performance optimization strategy, application and prospect. Nano. Res. Energy. 2025, 4, e9120132.

53. Li, J.; Chen, C.; Xu, L.; et al. Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS. Au. 2023, 3, 736-55.

54. Li, Z.; Wang, H.; Gao, Y. Computational study of tri-atomic catalyst-loaded two-dimensional graphenylene for overall water splitting. Catalysts 2025, 15, 296.

55. Su, J.; Musgrave, C. B.; Song, Y.; et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 2023, 6, 818-28.

56. Gao, Z.; Li, A.; Liu, X.; et al. Shielding Pt/γ-Mo2N by inert nano-overlays enables stable H2 production. Nature 2025, 638, 690-6.

57. Gates, B. C.; Katz, A.; Liu, J. Nested metal catalysts: metal atoms and clusters stabilized by confinement with accessibility on supports. Precis. Chem. 2023, 1, 3-13.

58. Deng, Z.; Liu, Y.; Lin, J.; Chen, W. Rational design and energy catalytic application of high-loading single-atom catalysts. Rare. Met. 2024, 43, 4844-66.

59. Deng, Z.; Guo, Y.; Sun, Z.; Lin, J.; Zhai, H.; Chen, W. Electrocatalytic organic transformation reactions in green chemistry: exploring nanocrystals and single atom catalysts. Nano. Res. 2024, 17, 9326-44.

60. Chen, C.; Sun, M.; Wang, K.; Li, Y. Dual-metal single-atomic catalyst: the challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat 2022, 3, 533-64.

61. Wei, J.; Tang, H.; Sheng, L.; et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun. 2024, 15, 559.

62. Ma, Y.; Liu, X.; Tang, M.; et al. Waste eggshell-derived N, P, S tri-doped core-shell catalysts for efficient Fenton-like catalysis. Chem. Eng. J. 2022, 440, 135879.

63. Yang, N.; Li, L.; Li, J.; Ding, W.; Wei, Z. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: charge, spin density and ligand effect. Chem. Sci. 2018, 9, 5795-804.

64. Li, S.; E, J.; Zhao, X.; et al. Hetero-trimetallic atom catalysts enable targeted ROS generation and redox signaling for intensive apoptosis and ferroptosis. Adv. Mater. 2025, 37, e2417198.

65. Yuan, L.; Li, X.; Li, G.; et al. Gram-scale preparation of tri-coordinated single-atom catalysts for CO2 electrolysis in large-scale membrane electrode assembly. Adv. Sci. 2025, 12, e2500368.

66. Gao, T.; Li, X.; Chen, X.; et al. Ultra-fast preparing carbon nanotube-supported trimetallic Ni, Ru, Fe heterostructures as robust bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 424, 130416.

67. Zhao, X.; Li, W. P.; Cao, Y.; et al. Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS. Nano. 2024, 18, 4256-68.

68. Wang, Y.; Li, C.; Han, X.; et al. General negative pressure annealing approach for creating ultra-high-loading single atom catalyst libraries. Nat. Commun. 2024, 15, 5675.

69. Huang, J.; Hu, S.; Liu, M.; et al. Single-, double-, and triple-atom catalysts on PC6 for nitrate reduction to ammonia: a computational screening. Electrochim. Acta. 2024, 504, 144915.

70. Wang, S.; Zhao, T.; Yan, L. Tailoring of three-atom metal cluster catalysts for ammonia synthesis. Catalysts 2023, 13, 869.

71. Liu, Z.; Ma, A.; Wang, Z.; et al. Single-cluster anchored on PC6 monolayer as high-performance electrocatalyst for carbon dioxide reduction reaction: first principles study. J. Colloid. Interface. Sci. 2024, 669, 600-11.

72. Shi, X.; Li, Y.; Zhang, S.; et al. Precious trimetallic single-cluster catalysts for oxygen and hydrogen electrocatalytic reactions: theoretical considerations. Nano. Res. 2023, 16, 8042-50.

73. Lin, X.; Li, Q.; Hu, Y.; et al. Revealing atomic configuration and synergistic interaction of single-atom-based Zn-Co-Fe trimetallic sites for enhancing oxygen reduction and evolution reactions. Small 2023, 19, e2300612.

74. Wang, W.; Zheng, Y.; Hu, Y.; Liu, Y.; Chen, S. Intrinsic carbon defects for the electrosynthesis of H2O2. J. Phys. Chem. Lett. 2022, 13, 8914-20.

75. Zhu, J.; Mu, S. Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 2020, 30, 2001097.

76. Tsai, J.; Hong, W.; Pourzolfaghar, H.; Wang, W.; Li, Y. A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. Chem. Eng. J. 2023, 460, 141868.

77. Jin, H.; Ha, M.; Kim, M. G.; Lee, J. H.; Kim, K. S. Engineering Pt coordination environment with atomically dispersed transition metal sites toward superior hydrogen evolution. Adv. Energy. Mater. 2023, 13, 2204213.

78. Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001-33.

79. Jia, J.; Li, Z.; Sang, Z.; et al. High-throughput design of single-atom catalysts with nonplanar and triple pyrrole-N coordination for highly efficient H2O2 electrosynthesis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202421864.

80. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

81. Holby, E. F.; Taylor, C. D. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: role of *OH ligands. Sci. Rep. 2015, 5, 9286.

82. Cui, D.; Li, Y.; Pan, K.; et al. NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity. Front. Chem. Sci. Eng. 2023, 17, 1973-85.

83. Xiao, J.; Liu, Z.; Wang, X.; Li, F.; Zhao, Z. Homonuclear multi-atom catalysts for CO2 electroreduction: a comparison density functional theory study with their single-atom counterparts. J. Mater. Chem. A. 2023, 11, 25662-70.

84. Li, F.; Tian, Y.; Su, S.; et al. Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B. Environ. 2021, 299, 120665.

85. Li, Y.; Zuo, S.; Wu, X.; et al. Design of hybrid zeolitic imidazolate framework-derived material with C-Mo-S triatomic coordination for electrochemical oxygen reduction. Small 2021, 17, e2003256.

86. Sementa, L.; Barcaro, G.; Fortunelli, A. Analogy between homogeneous and heterogeneous catalysis by subnanometer metal clusters: ethylene oxidation on Ag trimers supported on MgO(1 0 0). Inorg. Chim. Acta. 2015, 431, 150-5.

87. Wang, Y.; Zhang, Y.; Ma, N.; et al. High-selectivity CO2-to-CH4 electrochemical reduction on copper trimer: a theoretical insight. Surf. Interfaces. 2024, 50, 104498.

88. Zhang, S.; Chen, M.; Zhao, X.; et al. Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal–air batteries. Electrochem. Energ. Rev. 2021, 4, 336-81.

89. Yang, M.; Cui, Z.; DiSalvo, F. J. Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 7041-4.

90. Chen, S.; Gao, Y.; Wang, W.; Prezhdo, O. V.; Xu, L. Prediction of three-metal cluster catalysts on two-dimensional W2N3 support with integrated descriptors for electrocatalytic nitrogen reduction. ACS. Nano. 2023, 2, 1522-32.

91. Wang, G.; Jiang, X.; Jiang, Y.; Wang, Y.; Li, J. Screened Fe3 and Ru3 single-cluster catalysts anchored on MoS2 supports for selective hydrogenation of CO2. ACS. Catal. 2023, 13, 8413-22.

92. Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560-5.

93. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy. Environ. Sci. 2012, 5, 7050.

94. Li, L.; Hasan, I. M. U.; Farwa, .; et al. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review. Nano. Res. Energy. 2022, 1, e9120015.

95. Chu, S.; Kang, C.; Park, W.; et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. SmartMat 2022, 3, 194-205.

96. Xiao, C.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS. Nano. 2021, 15, 7975-8000.

97. Liu, S.; Wang, Y.; Norwood, S. Discovering effective descriptors for CO2 electroreduction to predict the catalysts with different selectivity. J. Phys. Chem. C. 2021, 125, 4550-8.

98. Wu, K.; Sun, C.; Wang, Z.; et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS. Mater. Lett. 2022, 4, 650-6.

99. Chen, J.; Shakouri, M.; Alizadeh, M.; et al. A catalytic sites contiguity study on atomically-dispersed ZnO-Cu/SiO2 catalysts to improve methanol formation from CO2 hydrogenation. Can. J. Chem. Eng. 2025.

100. Fu, P.; Chen, C.; Wu, C.; et al. Covalent organic framework stabilized single CoN4Cl2 site boosts photocatalytic CO2 reduction into tunable syngas. Angew. Chem. Int. Ed. Engl. 2025, 64, e202415202.

101. Chen, Y.; Zhuo, H.; Pan, Y.; Liang, J.; Liu, C.; Li, J. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci. China. Mater. 2021, 64, 1939-51.

102. Dong, C.; Li, Y.; Cheng, D.; et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS. Catal. 2020, 10, 11011-45.

103. Chu, M.; Tu, W.; Zhuang, Z.; et al. Efficient polyolefin upcycling over single-atom alloy catalyst. CCS. Chem. 2025, 7, 2451-64.

104. Chen, Q.; Yang, X.; Mao, T.; Xiao, J. Spatially confining copper atom in flowerlike-CoFe hydroxides for smartphone-based ratiometric colorimetric dual-mode detection of nitrite. Microchem. J. 2024, 201, 110578.

105. Shang, H.; Zhang, X.; Ding, M.; Zhang, A.; Wang, C. A smartphone-assisted colorimetric and photothermal probe for glutathione detection based on enhanced oxidase-mimic CoFeCe three-atom nanozyme in food. Food. Chem. 2023, 423, 136296.

106. Tang, T.; Bai, X.; Wang, Z.; Guan, J. Structural engineering of atomic catalysts for electrocatalysis. Chem. Sci. 2024, 15, 5082-112.

107. Yan, Y.; Chen, J.; Wang, Z.; et al. Novel flexible aromatic Cu3 metal-organic π-cluster for electrocatalytic CO2 reduction reaction. Surf. Interfaces. 2024, 48, 104349.

108. Ouyang, Y.; Shi, L.; Bai, X.; Li, Q.; Wang, J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807-13.

109. Gandionco, K. A.; Kim, J.; Bekaert, L.; Hubin, A.; Lim, J. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon. Energy. 2024, 6, e410.

110. Xie, Z.; Hwang, S.; Chen, J. G. Reduction-induced metal/oxide interfacial sites for selective CO2 hydrogenation. SmartMat 2023, 4, e1201.

111. Wang, J.; Zheng, X.; Wang, G.; et al. Defective bimetallic selenides for selective CO2 electroreduction to CO. Adv. Mater. 2022, 34, e2106354.

112. Tamtaji, M.; Kwon, S.; Musgrave, C. B. 3rd.; Goddard, W. A. 3rd.; Chen, G. Reaction Mechanism of rapid CO electroreduction to propylene and cyclopropane (C3+) over triple atom catalysts. ACS. Appl. Mater. Interfaces. 2024, 16, 50567-75.

113. Zhao, Z. H.; Zheng, K.; Huang, N. Y.; et al. A Cu(111)@metal-organic framework as a tandem catalyst for highly selective CO2 electroreduction to C2H4. Chem. Commun. 2021, 57, 12764-7.

114. Chen, J.; Wang, T.; Li, Z.; et al. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano. Res. 2021, 14, 3188-207.

115. Liu, S.; Yin, Y.; Yang, J.; et al. Temperature-dependent pathways in carbon dioxide electroreduction. Sci. Bull. 2025, 70, 889-96.

116. Liu, J.; Li, P.; Jia, S.; et al. Electrocatalytic CO2 hydrogenation to C2+ alcohols catalysed by Pr–Cu oxide heterointerfaces. Nat. Synth. 2025, 4, 730-43.

117. Gawande, M. B.; Goswami, A.; Felpin, F. X.; et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722-811.

118. Jiang, K.; Cai, W. Disentangling distinct Cu surface sites for electrocatalytic CO2-to-CO and CO-to-C2+ conversion. Sci. China. Chem. 2024, 67, 1047-8.

119. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. Chemphyschem 2017, 18, 3266-73.

120. Liu, M.; Liu, S.; Xu, Q.; et al. Dual atomic catalysts from COF-derived carbon for CO2 RR by suppressing HER through synergistic effects. Carbon. Energy. 2023, 5, e300.

121. Wang, D.; Chen, Z.; Wu, Y.; et al. Structurally ordered high-entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat 2023, 4, e1117.

122. Yang, X.; Li, Q.; Chi, S.; Li, H.; Huang, Y.; Cao, R. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO2. SmartMat 2022, 3, 163-72.

123. Zhou, S.; Cao, S.; Wei, S.; et al. Triple-atom catalysts 3TM-GYs (TM = Cu, Fe, and Co; GY = graphyne) for high-performance CO2 reduction reaction to C1 products. Appl. Mater. Today. 2021, 25, 101245.

124. Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS. Catal. 2020, 10, 1754-68.

125. Zhan, C.; Dattila, F.; Rettenmaier, C.; et al. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy. 2024, 9, 1485-96.

126. Banerjee, S.; Gerke, C. S.; Thoi, V. S. Guiding CO2RR Selectivity by compositional tuning in the electrochemical double layer. Acc. Chem. Res. 2022, 55, 504-15.

127. Iqbal, M. S.; Yao, Z.; Ruan, Y.; et al. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare. Met. 2023, 42, 1075-97.

128. He, C.; Zhang, Y.; Wang, J.; Fu, L. Anchor single atom in h-BN assist NO synthesis NH3: a computational view. Rare. Met. 2022, 41, 3456-65.

129. Zhang, Y.; Li, S.; Zheng, W.; Wang, X. Computational design of catalysts for ammonia synthesis. Nano. Res. Energy. 2023, 2, e9120068.

130. Yang, X.; Nash, J.; Anibal, J.; et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387-91.

131. Macfarlane, D. R.; Cherepanov, P. V.; Choi, J.; et al. A roadmap to the ammonia economy. Joule 2020, 4, 1186-205.

132. Lin, L.; Wei, F.; Jiang, R.; Huang, Y.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano. Res. 2023, 16, 309-17.

133. Guo, H.; Zhang, P.; Huang, S.; et al. Achilles’ heel of single atom catalysts towards practical PEMFC application: degradation mechanisms and regulatory strategies. Nano. Res. Energy. 2025, 4, e9120144.

134. Wang, L.; Xia, M.; Wang, H.; et al. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055-74.

135. Cheng, R.; Cui, C. N.; Luo, Z. X. Reduction of dinitrogen to ammonia on doped three-atom clusters Nb2M (M = Sc to Cu & Y to Ag). Rare. Met. 2024, 43, 3810-8.

136. Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy. Environ. Sci. 2020, 13, 331-44.

137. Li, M.; Xie, Y.; Song, J.; Yang, J.; Dong, J.; Li, J. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts. Chin. J. Catal. 2024, 60, 42-67.

138. Kerpal, C.; Harding, D. J.; Lyon, J. T.; Meijer, G.; Fielicke, A. N2 activation by neutral ruthenium clusters. J. Phys. Chem. C. 2013, 117, 12153-8.

139. Ghoshal, S.; Pramanik, A.; Sarkar, P. Towards H2O catalyzed N2-fixation over TiO2 doped Run clusters (n = 5, 6): a mechanistic and kinetic approach. Phys. Chem. Chem. Phys. 2021, 23, 1527-38.

140. Chen, Z. W.; Chen, L. X.; Jiang, M.; et al. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J. Mater. Chem. A. 2020, 8, 15086-93.

141. Yang, L.; Feng, S.; Zhu, W. Achieving reaction pathway separation for electrochemical nitrate fixation on triatomic catalysts: a new mechanism. J. Hazard. Mater. 2023, 441, 129972.

142. Fu, X.; Zhang, J.; Kang, Y. Recent advances and challenges of electrochemical ammonia synthesis. Chem. Catal. 2022, 2, 2590-613.

143. Liu, Y.; Zhang, H.; Jiang, Y.; et al. Sulfonic acid-functionalized spiropyran colorimetric gas-sensitive aerogel for real-time visual ammonia sensing. Chem. Eng. J. 2025, 511, 162160.

144. Andersen, S. Z.; Čolić, V.; Yang, S.; et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504-8.

145. Kong, D.; Moon, P. J.; Lui, E. K. J.; Bsharat, O.; Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 2020, 369, 557-61.

146. Liu, X.; Wang, P.; Zhang, Q.; et al. Synthesis of MoS2/Ni3S2 heterostructure for efficient electrocatalytic hydrogen evolution reaction through optimizing the sulfur sources selection. Appl. Surf. Sci. 2018, 459, 422-9.

147. An, Q.; Bo, S.; Jiang, J.; et al. Atomic-level interface engineering for boosting oxygen electrocatalysis performance of single-atom catalysts: from metal active center to the first coordination sphere. Adv. Sci. 2023, 10, e2205031.

148. Lu, Z.; Wang, B.; Hu, Y.; et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. Engl. 2019, 58, 2622-6.

149. Pang, M.; Yang, M.; Zhang, H.; et al. Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions. Nano. Res. 2024, 17, 9371-96.

150. Gong, H.; Liang, X.; Sun, G.; et al. Insight into role of Ni/Fe existing forms in reversible oxygen catalysis based on Ni-Fe single-atom/nanoparticles and N-doped carbon. Rare. Met. 2022, 41, 4034-40.

151. Xu, H.; Huang, C.; Shuai, T.; et al. Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery. Sci. China. Mater. 2023, 66, 2953-3003.

152. Qin, S.; Li, K.; Cao, M.; et al. Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries. Nano. Res. Energy. 2024, 3, e9120122.

153. Yin, Z.; Li, Y.; Ye, Y.; et al. Sp/sp2 carbon ratio-driven high-throughput screening of electrocatalytic nitrogen reduction performance on transition metal single-atom catalysts. Rare. Met. 2024, 43, 5781-91.

154. Xie, K.; Xu, K.; Liu, M.; Song, X.; Xu, S.; Si, H. Catalysts for selective hydrogenation of acetylene: a review. Mater. Today. Catal. 2023, 3, 100029.

155. Han, B.; Zhang, R. Unraveling the role of active site Rh aggregation form in tuning the catalytic performance of ethane direct dehydrogenation. Mol. Catal. 2023, 547, 113397.

156. Cai, S.; Zhang, W.; Yang, R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano. Res. 2023, 16, 13056-76.

157. Huang, J.; Gu, H.; Wang, G.; Wu, R.; Sun, M.; Chen, Z. Visual sensor arrays for distinction of phenolic acids based on two single-atom nanozymes. Anal. Chem. 2023, 95, 9107-15.

158. Li, M.; Wu, T.; Wang, H.; et al. Atomic insights into dynamic integration of morphology and surface chemistry on the growth mechanism of ternary Pt-based nanocatalysts. Cell. Rep. Phys. Sci. 2025, 6, 102396.

159. Pu, T.; Ding, J.; Zhang, F.; et al. Dual atom catalysts for energy and environmental applications. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305964.

160. Wang, G.; Zhang, M.; Zhang, G.; et al. Novel approach of diffusion-controlled sequential reduction to synthesize dual-atomic-site alloy for enhanced bifunctional electrocatalysis in acidic and alkaline media. Adv. Funct. Mater. 2024, 34, 2308876.

161. Zhao, L.; Zhang, Y.; Huang, L. B.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

162. Babucci, M.; Sarac Oztuna, F. E.; Debefve, L. M.; et al. Atomically dispersed reduced graphene aerogel-supported iridium catalyst with an iridium loading of 14.8 wt %. ACS. Catal. 2019, 9, 9905-13.

163. Yin, S.; Yi, H.; Liu, M.; et al. An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nat. Commun. 2024, 15, 6229.

164. Wang, Z.; Jin, X.; Zhu, C.; et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, e2104718.

165. Li, M.; Chen, J.; Wu, W.; Wu, S.; Xu, L.; Dong, S. Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system. Nano. Res. 2023, 16, 4678-84.

166. Xu, Y.; Xie, M.; Zhong, H.; Cao, Y. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS. Catal. 2022, 12, 8698-706.

167. Kunal, P.; Yan, C.; Guo, H.; et al. Pd–Au–Cu ternary alloy nanoparticles: highly tunable and economical nitrite reduction catalysts. ACS. Catal. 2023, 13, 11945-53.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/