REFERENCES
1. Brimioulle R, Lenhart D, Maturi MM, Bach T. Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed Engl. 2015;54:3872-90.
2. Yao W, Bergamino EAB, Ngai MY. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem. 2022;14:e202101292.
3. Jiang C, Chen W, Zheng WH, Lu H. Advances in asymmetric visible-light photocatalysis, 2015-2019. Org Biomol Chem. 2019;17:8673-89.
4. Zarra S, Wood DM, Roberts DA, Nitschke JR. Molecular containers in complex chemical systems. Chem Soc Rev. 2015;44:419-32.
5. Morimoto M, Bierschenk SM, Xia KT, Bergman RG, Raymond KN, Toste FD. Advances in supramolecular host-mediated reactivity. Nat Catal. 2020;3:969-84.
6. Ramamurthy V, Gupta S. Supramolecular photochemistry: from molecular crystals to water-soluble capsules. Chem Soc Rev. 2015;44:119-35.
7. Ramamurthy V, Sivaguru J. Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev. 2016;116:9914-93.
8. Gao W, Zhang H, Jin G. Supramolecular catalysis based on discrete heterometallic coordination-driven metallacycles and metallacages. Coordin Chem Rev. 2019;386:69-84.
9. Liu Y, Xuan W, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater. 2010;22:4112-35.
10. Hao Y, Lu YL, Jiao Z, Su CY. Photocatalysis meets confinement: an emerging opportunity for photoinduced organic transformations. Angew Chem Int Ed Engl. 2024;63:e202317808.
11. Ballester P, Wang QQ, Gaeta C. Supramolecular approaches to mediate chemical reactivity. Beilstein J Org Chem. 2022;18:1463-5.
12. Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis. Chem Rev. 2023;123:5225-61.
13. Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev. 2021;50:7681-724.
15. Hong CM, Bergman RG, Raymond KN, Toste FD. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc Chem Res. 2018;51:2447-55.
16. Jing X, He C, Zhao L, Duan C. Photochemical properties of host-guest supramolecular systems with structurally confined metal-organic capsules. Acc Chem Res. 2019;52:100-9.
17. Pascanu V, González Miera G, Inge AK, Martín-Matute B. Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc. 2019;141:7223-34.
18. Zhang Q, Catti L, Tiefenbacher K. Catalysis inside the hexameric resorcinarene capsule. Acc Chem Res. 2018;51:2107-14.
19. Wang MX. Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc Chem Res. 2012;45:182-95.
20. Fang Y, Powell JA, Li E, et al. Catalytic reactions within the cavity of coordination cages. Chem Soc Rev. 2019;48:4707-30.
21. Qin B, Yin Z, Tang X, et al. Supramolecular polymer chemistry: from structural control to functional assembly. Prog Polym Sci. 2020;100:101167.
22. Vallavoju N, Sivaguru J. Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem Soc Rev. 2014;43:4084-101.
24. Nishijima M, Wada T, Mori T, Pace TC, Bohne C, Inoue Y. Highly enantiomeric supramolecular [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by human serum albumin. J Am Chem Soc. 2007;129:3478-9.
25. Wada T, Nishijima M, Fujisawa T, et al. Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J Am Chem Soc. 2003;125:7492-3.
26. Ishida Y, Kai Y, Kato SY, et al. Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew Chem Int Ed Engl. 2008;47:8241-5.
27. Ishida Y, Matsuoka Y, Kai Y, et al. Metastable liquid crystal as time-responsive reaction medium: aging-induced dual enantioselective control. J Am Chem Soc. 2013;135:6407-10.
28. Ji J, Wei X, Wu W, Yang C. Asymmetric photoreactions in supramolecular assemblies. Acc Chem Res. 2023;56:1896-907.
29. Wei X, Wu W, Matsushita R, et al. Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J Am Chem Soc. 2018;140:3959-74.
30. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875-918.
31. Nakamura A, Inoue Y. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by gamma-cyclodextrin. J Am Chem Soc. 2003;125:966-72.
32. Nakamura A, Inoue Y. Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within gamma-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity. J Am Chem Soc. 2005;127:5338-9.
33. Yang C, Nakamura A, Wada T, Inoue Y. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by gamma-cyclodextrins with a flexible or rigid cap. Org Lett. 2006;8:3005-8.
34. Yang C, Mori T, Origane Y, et al. Highly stereoselective photocyclodimerization of alpha-cyclodextrin-appended anthracene mediated by gamma-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J Am Chem Soc. 2008;130:8574-5.
35. Ke C, Yang C, Mori T, Wada T, Liu Y, Inoue Y. Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew Chem Int Ed Engl. 2009;48:6675-7.
36. Luo L, Liao GH, Wu XL, Lei L, Tung CH, Wu LZ. Gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. J Org Chem. 2009;74:3506-15.
37. Yang C, Ke C, Liang W, et al. Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host. J Am Chem Soc. 2011;133:13786-9.
38. Yao J, Yan Z, Ji J, et al. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin. J Am Chem Soc. 2014;136:6916-9.
39. Ji J, Wu W, Liang W, et al. An ultimate stereocontrol in supramolecular photochirogenesis: photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J Am Chem Soc. 2019;141:9225-38.
40. Kanagaraj K, Liang W, Rao M, et al. pH-controlled chirality inversion in enantiodifferentiating photocyclodimerization of 2-antharacenecarboxylic acid mediated by γ-cyclodextrin derivatives. Org Lett. 2020;22:5273-8.
41. Wei X, Raj AM, Ji J, et al. Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand. Org Lett. 2019;21:7868-72.
44. Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem Rev. 2022;122:1654-716.
45. Koodanjeri S, Joy A, Ramamurthy V. Asymmetric induction with cyclodextrins: photocyclization of tropolone alkyl ethers. Tetrahedron. 2000;56:7003-9.
46. Shailaja J, Karthikeyan S, Ramamurthy V. Cyclodextrin mediated solvent-free enantioselective photocyclization of N-alkyl pyridones. Tetrahedron Lett. 2002;43:9335-9.
47. Kaliappan R, Ramamurthy V. Chiral photochemistry within natural and functionalized cyclodextrins: chiral induction in photocyclization products from carbonyl compounds. J Photoch Photobio A. 2009;207:144-52.
48. Mansour AT, Buendia J, Xie J, et al. β-cyclodextrin-mediated enantioselective photochemical electrocyclization of 1,3-dihydro-2H-azepin-2-one. J Org Chem. 2017;82:9832-6.
49. Fukuhara G, Mori T, Wada T, Inoue Y. The first supramolecular photosensitization of enantiodifferentiating bimolecular reaction: anti-Markovnikov photoaddition of methanol to 1,1-diphenylpropene sensitized by modified beta-cyclodextrin. Chem Commun. 2006:1712-4.
50. Fukuhara G, Mori T, Inoue Y. Competitive enantiodifferentiating anti-Markovnikov photoaddition of water and methanol to 1,1-diphenylpropene using a sensitizing cyclodextrin host. J Org Chem. 2009;74:6714-27.
51. Dong J, Liu Y, Cui Y. Supramolecular chirality in metal-organic complexes. Acc Chem Res. 2021;54:194-206.
52. Jin Y, Zhang Q, Zhang Y, Duan C. Electron transfer in the confined environments of metal-organic coordination supramolecular systems. Chem Soc Rev. 2020;49:5561-600.
53. Pan M, Wu K, Zhang J, Su C. Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications. Coordin Chem Rev. 2019;378:333-49.
54. Li K, Zhang LY, Yan C, et al. Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection. J Am Chem Soc. 2014;136:4456-9.
55. Wu K, Li K, Hou YJ, et al. Homochiral D4-symmetric metal-organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules. Nat Commun. 2016;7:10487.
56. Guo J, Xu YW, Li K, et al. Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage. Angew Chem Int Ed Engl. 2017;56:3852-6.
57. Guo J, Fan YZ, Lu YL, Zheng SP, Su CY. Visible-light photocatalysis of asymmetric [2+2] cycloaddition in cage-confined nanospace merging chirality with triplet-state photosensitization. Angew Chem Int Ed Engl. 2020;59:8661-9.
58. Yoshizawa M, Tamura M, Fujita M. Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science. 2006;312:251-4.
59. Nishioka Y, Yamaguchi T, Kawano M, Fujita M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J Am Chem Soc. 2008;130:8160-1.
60. Chen J, Wu X, Huang S, et al. Catalytic enantioselective cycloaddition transformation of tricyclic arenes enabled by a dual-role chiral cage-reactor. ACS Catal. 2024;14:3733-41.
61. Ruan J, Li Z, Yin C, et al. Enantioselective [2+2] cross-photocycloaddition enabled by a chiral cage reactor via multilevel-selectivity control. ACS Catal. 2024;14:7321-31.
62. Xiao JD, Jiang HL. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. 2019;52:356-66.
63. Wang J, Wang C, Lin W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012;2:2630-40.
64. Qiu X, Zhang Y, Zhu Y, et al. Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities. Adv Mater. 2021;33:e2001731.
65. Chen XY, Chen H, Đorđević L, et al. Selective photodimerization in a cyclodextrin metal-organic framework. J Am Chem Soc. 2021;143:9129-39.
66. Wu P, He C, Wang J, et al. Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. J Am Chem Soc. 2012;134:14991-9.
67. Xia Z, He C, Wang X, Duan C. Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization. Nat Commun. 2017;8:361.
68. Zhang Y, Guo J, Shi L, et al. Tunable chiral metal organic frameworks toward visible light-driven asymmetric catalysis. Sci Adv. 2017;3:e1701162.
69. Hu YH, Liu CX, Wang JC, Ren XH, Kan X, Dong YB. TiO2@UiO-68-CIL: a metal-organic-framework-based bifunctional composite catalyst for a one-pot sequential asymmetric Morita-Baylis-Hillman reaction. Inorg Chem. 2019;58:4722-30.
70. Wang S, Liu W, Wang J, et al. Mechanochemical encapsulation of enzymes into MOFs for photoenzymatic enantioselective catalysis. ACS Mater Lett. 2024;6:2609-16.
71. Liu W, Yang Y, Yang X, et al. Template-directed fabrication of highly efficient metal-organic framework photocatalysts. ACS Appl Mater Interfaces. 2021;13:58619-29.
72. Kushnarenko A, Zabelina A, Guselnikova O, et al. Merging gold plasmonic nanoparticles and L-proline inside a MOF for plasmon-induced visible light chiral organocatalysis at low temperature. Nanoscale. 2024;16:5313-22.
74. Yang L, Wang J, Zhao K, et al. Photoactive covalent organic frameworks for catalyzing organic reactions. Chempluschem. 2022;87:e202200281.
76. Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42:548-68.
77. He T, Zhao Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew Chem Int Ed Engl. 2023;62:e202303086.
78. Kang X, Stephens ER, Spector-Watts BM, et al. Challenges and opportunities for chiral covalent organic frameworks. Chem Sci. 2022;13:9811-32.
79. Kang X, Wu X, Han X, Yuan C, Liu Y, Cui Y. Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chem Sci. 2019;11:1494-502.
80. Li C, Ma Y, Liu H, et al. Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese J Catal. 2020;41:1288-97.
81. Zhou Z, Li L, Dai L, Liu H, Li Y, Li P. The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asymmetric α‐alkylation of aldehydes. J Polym Sci. 2024;62:1621-8.
82. Ma HC, Sun YN, Chen GJ, Dong YB. A BINOL-phosphoric acid and metalloporphyrin derived chiral covalent organic framework for enantioselective α-benzylation of aldehydes. Chem Sci. 2022;13:1906-11.
83. He T, Liu R, Wang S, et al. Bottom-up design of photoactive chiral covalent organic frameworks for visible-light-driven asymmetric catalysis. J Am Chem Soc. 2023;145:18015-21.
84. Kan X, Wang JC, Chen Z, et al. Synthesis of metal-free chiral covalent organic framework for visible-light-mediated enantioselective photooxidation in water. J Am Chem Soc. 2022;144:6681-6.
85. Ma HC, Zhao CC, Chen GJ, Dong YB. Photothermal conversion triggered thermal asymmetric catalysis within metal nanoparticles loaded homochiral covalent organic framework. Nat Commun. 2019;10:3368.
86. Ma HC, Chen GJ, Huang F, Dong YB. Homochiral covalent organic framework for catalytic asymmetric synthesis of a drug intermediate. J Am Chem Soc. 2020;142:12574-8.