REFERENCES
1. Johnson, N. C.; Xie, S. P.; Kosaka, Y.; Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 2018, 9, 1724.
2. Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy. Rev. 2007, 11, 1388-413.
3. Xu, R.; Liu, K.; Du, H.; et al. Falling leaves return to their roots: a review on the preparation of γ-valerolactone from lignocellulose and its application in the conversion of lignocellulose. ChemSusChem 2020, 13, 6461-76.
4. U.S. Department of Energy. Top value added chemicals from biomass. Volume I - results of screening for potential candidates from sugars and synthesis gas. https://docs.nrel.gov/docs/fy04osti/35523.pdf. (accessed 9 May 2025)
5. Lange, J. P.; Price, R.; Ayoub, P. M.; et al. Valeric biofuels: a platform of cellulosic transportation fuels. Angew. Chem. Int. Ed. Engl. 2010, 49, 4479-83.
6. Yu, Z.; Lu, X.; Liu, C.; Han, Y.; Ji, N. Synthesis of γ-valerolactone from different biomass-derived feedstocks: recent advances on reaction mechanisms and catalytic systems. Renew. Sustain. Energy. Rev. 2019, 112, 140-57.
7. Osatiashtiani, A.; Lee, A. F.; Wilson, K. Recent advances in the production of γ-valerolactone from biomass-derived feedstocks via heterogeneous catalytic transfer hydrogenation. J. Chem. Technol. Biotech. 2017, 92, 1125-35.
8. Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green. Chem. 2013, 15, 584.
9. Li, H.; Yang, S.; Riisager, A.; et al. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green. Chem. 2016, 18, 5701-35.
10. Wang, J.; Xiang, Z.; Huang, Z.; Xu, Q.; Yin, D. Recent advances on bifunctional catalysts for one-pot conversion of furfural to γ-valerolactone. Front. Chem. 2022, 10, 959572.
11. Gilkey, M. J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS. Catal. 2016, 6, 1420-36.
12. Chheda, J. N.; Dumesic, J. A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal. Today. 2007, 123, 59-70.
13. Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 2010, 39, 81-8.
14. Ju, Z.; Feng, S.; Ren, L.; et al. Probing the mechanism of the conversion of methyl levulinate into γ-valerolactone catalyzed by Al(OiPr)3 in an alcohol solvent: a DFT study. RSC. Adv. 2022, 12, 2788-97.
15. Piskun, A.; van de Bovenkamp, H.; Rasrendra, C.; Winkelman, J.; Heeres, H. Kinetic modeling of levulinic acid hydrogenation to γ-valerolactone in water using a carbon supported Ru catalyst. Appl. Catal. A. Gen. 2016, 525, 158-67.
16. Delgado, J.; Vasquez Salcedo, W. N.; Bronzetti, G.; et al. Kinetic model assessment for the synthesis of γ-valerolactone from n-butyl levulinate and levulinic acid hydrogenation over the synergy effect of dual catalysts Ru/C and Amberlite IR-120. Chem. Eng. J. 2022, 430, 133053.
17. Salcedo, W. N. V.; Mignot, M.; Renou, B.; Leveneur, S. Assessment of kinetic models for the production of γ-valerolactone developed in isothermal, adiabatic and isoperibolic conditions. Fuel 2023, 350, 128792.
18. Yan, K.; Yang, Y.; Chai, J.; Lu, Y. Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. Appl. Catal. B. Environ. 2015, 179, 292-304.
19. Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I. T. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Top. Catal. 2008, 48, 49-54.
20. Fábos, V.; Mika, L. T.; Horváth, I. T. Selective conversion of levulinic and formic acids to γ-valerolactone with the shvo catalyst. Organometallics 2014, 33, 181-7.
21. Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of zeolites and related porous materials:synthesis and structure. John Wiley & Sons (Asia) Pte Ltd; 2007.
22. Wang, Y.; Han, J.; Jin, K.; et al. Fluoride-free synthesis of high-silica RHO zeolite for the highly selective synthesis of methylamine. Inorg. Chem. Front. 2024, 11, 5473-83.
23. Su, H.; Zhou, Q.; Jin, K.; et al. Ultra-low silica zeolite TON: facile synthesis and efficient catalysis in n-dodecane hydroisomerization. Fuel 2024, 376, 132651.
24. Wang, B.; Li, J.; Zhou, X.; et al. Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorg. Chem. Front. 2022, 9, 468-77.
25. Wang, X.; Yan, N.; Xie, M.; et al. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chem. Sci. 2021, 12, 8803-10.
26. He, P.; Chen, Y.; Jarvis, J.; et al. Highly selective aromatization of octane over Pt-Zn/UZSM-5: the effect of Pt-Zn interaction and Pt position. ACS. Appl. Mater. Interfaces. 2020, 12, 28273-87.
27. Li, L.; Liu, S.; Jiang, R.; et al. Subnanometric Pt on Cu nanoparticles confined in Y-zeolite: highly-efficient catalysts for selective catalytic reduction of NOx by CO. ChemCatChem 2021, 13, 1568-77.
28. Ryu, T.; Ahn, N. H.; Seo, S.; et al. Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts. Angew. Chem. Int. Ed. Engl. 2017, 56, 3256-60.
29. Lin, W. C.; Wu, S.; Li, G.; et al. Cooperative catalytically active sites for methanol activation by single metal ion-doped H-ZSM-5. Chem. Sci. 2020, 12, 210-9.
30. Sree, S. P.; Dendooven, J.; Korányi, T. I.; et al. Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement. Catal. Sci. Technol. 2011, 1, 218.
31. Jiang, F.; Huang, J.; Niu, L.; Xiao, G. Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytic performance in chichibabin reaction. Catal. Lett. 2015, 145, 947-54.
32. Xu, D.; Wang, S.; Wu, B.; et al. Highly dispersed single-atom Pt and Pt clusters in the Fe-modified KL zeolite with enhanced selectivity for n-heptane aromatization. ACS. Appl. Mater. Interfaces. 2019, 11, 29858-67.
33. Zhang, J.; Lu, Z.; Wu, W.; et al. Mesopore differences between pillared lamellar MFI and MWW zeolites probed by atomic layer deposition of titania and consequences on photocatalysis. Micropor. Mesopor. Mat. 2019, 276, 260-9.
34. Kulkarni, A.; Lobo-Lapidus, R. J.; Gates, B. C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 2010, 46, 5997-6015.
35. Meng, F.; Gong, Z.; Wang, Q.; et al. Effects of ZrO2 crystalline phase on oxygen vacancy of GaZr oxides and their properties for CO2 hydrogenation to light olefins. Catal. Today. 2024, 433, 114661.
36. Martínez Figueredo, K. G.; Martínez, F. A.; Segobia, D. J.; Bertero, N. M. Valeric biofuels from biomass-derived γ-valerolactone: a critical overview of production processes. Chempluschem 2023, 88, e202300381.
37. Yan, P.; Wang, H.; Liao, Y.; Wang, C. Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: a review. Renew. Sustain. Energy. Rev. 2023, 178, 113219.
38. Victor, A.; Sharma, P.; Pulidindi, I. N.; Gedanken, A. Levulinic acid is a key strategic chemical from biomass. Catalysts 2022, 12, 909.
39. Hou, P.; Su, H.; Jin, K.; Li, Q.; Yan, W. Zirconium phosphate-pillared zeolite MCM-36 for green production of γ-valerolactone from levulinic acid via catalytic transfer hydrogenation. Molecules 2024, 29, 3779.
40. Wang, J.; Jaenicke, S.; Chuah, G. Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC. Adv. 2014, 4, 13481-9.
41. Morales, G.; Melero, J. A.; Iglesias, J.; Paniagua, M.; López-Aguado, C. From levulinic acid biorefineries to γ-valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst. React. Chem. Eng. 2019, 4, 1834-43.
42. López-Aguado, C.; Paniagua, M.; Melero, J. A.; et al. Stable continuous production of γ-valerolactone from biomass-derived levulinic acid over Zr–Al-Beta zeolite catalyst. Catalysts 2020, 10, 678.
43. Antunes, M. M.; Silva, A. F.; Fernandes, A.; Pillinger, M.; Ribeiro, F.; Valente, A. A. Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J. Catal. 2022, 406, 56-71.
44. Gao, M.; Yang, G.; He, G.; et al. Integrating zeolite and layered double hydroxide for highly selective catalytic production of γ-valerolactone. CCS. Chem. 2024, 6, 652-62.
45. Zhang, B.; Wu, Q.; Zhang, C.; et al. A robust Ru/ZSM-5 hydrogenation catalyst: insights into the resistances to ruthenium aggregation and carbon deposition. ChemCatChem 2017, 9, 3646-54.
46. Popova, M.; Djinović, P.; Ristić, A.; et al. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Bi-functional Ni/HZSM-5 catalyst. Front. Chem. 2018, 6, 285.
47. Wang, Y.; Bao, J.; Zuo, C.; et al. Ultra-small PtNi bimetallic encapsulated in silicalite-1 zeolite with fine-tuned surface acidity for selective conversion of levulinic acid. Appl. Organomet. Chem. 2023, 37, e6935.
48. Abusuek, D. A.; Tkachenko, O. P.; Bykov, A. V.; et al. ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: influence of the reaction conditions and the zeolite acidity. Catal. Today. 2023, 423, 113885.
49. Liang, W.; Xu, G.; Zhang, X.; Chen, H.; Fu, Y. MFI zeolite with confined adjustable synergistic Cu sites for the hydrogenation of levulinic acid. Green. Chem. 2024, 26, 498-506.
50. Li, J.; Li, D.; Yu, P.; et al. CeOx-induced oxygen vacancy-enhanced Pt-based titanium silicalite-1 catalysts for selective conversion of levulinic acid. Appl. Organomet. Chem. 2024, 38, e7447.
51. Varimalla, S.; Manda, K.; Boggala, S.; et al. Effect of method of preparation of Ni and/or Cu supported on ZSM-5 catalysts for the aqueous phase hydrogenation of levulinic acid to γ-valerolactone. Catal. Today. 2024, 441, 114916.
52. Yi, Z.; Hu, D.; Xu, H.; Wu, Z.; Zhang, M.; Yan, K. Metal regulating the highly selective synthesis of gamma-valerolactone and valeric biofuels from biomass-derived levulinic acid. Fuel 2020, 259, 116208.
53. Chen, X.; Deng, L.; Zhou, S.; Qiao, C.; Tian, Y. Alkaline modified Zr-loading on nanosheet zeolite towards production of γ-valerolactone from levulinic acid through catalytic transfer hydrogenation. Appl. Catal. A. Gen. 2024, 682, 119816.
54. Vu, H. T.; Harth, F. M.; Wilde, N. Silylated zeolites with enhanced hydrothermal stability for the aqueous-phase hydrogenation of levulinic acid to γ-valerolactone. Front. Chem. 2018, 6, 143.
55. Vu, H. T.; Goepel, M.; Gläser, R. Improving the hydrothermal stability of zeolite Y by La3+ cation exchange as a catalyst for the aqueous-phase hydrogenation of levulinic acid. RSC. Adv. 2021, 11, 5568-79.
56. Hu, D.; Xu, H.; Wu, Z.; et al. Noble metal-free hierarchical ZrY zeolite efficient for hydrogenation of biomass-derived levulinic acid. Front. Chem. 2021, 9, 725175.
57. Vu, H.; Harth, F. M.; Goepel, M.; Linares, N.; García–Martínez, J.; Gläser, R. Enhanced activity of a bifunctional Pt/zeolite Y catalyst with an intracrystalline hierarchical pore system in the aqueous-phase hydrogenation of levulinic acid. Chem. Eng. J. 2022, 430, 132763.
58. Jayakumari, M. T.; Kanakkampalayam Krishnan, C. Tuning Al sites in Y-zeolite for selective production of γ-valerolactone from levulinic acid. Appl. Catal. A. Gen. 2023, 663, 119318.
59. Al-Khawlani, A.; Wang, Y.; Bao, J.; et al. Enhanced catalytic activity and high stability of treated Pt-Ru/ zeolite Y catalysts for levulinic acid hydrogenation reaction. Catal. Commun. 2023, 183, 106761.
60. Wang, Y.; Zhou, Y.; Bao, J.; et al. Molecular synergistic synthesis of AIPO-18 zeolite-stabilized Pt nanocatalysts with high dispersion for the hydrogenation of levulinic acid to γ-valerolactone. Appl. Organomet. Chem. 2022, 36, e6646.
61. Al-Khawlani, A.; Bao, J.; Sheng, X.; et al. SSZ-39 zeolite-based Ru catalysts for selective hydrogenation of levulinic acid to γ-valerolactone: influence of synthesis method and zeolite acidity. Micropor. Mesopor. Mat. 2024, 372, 113112.
62. Li, W.; Li, F.; Chen, J.; et al. Efficient and sustainable hydrogenation of levulinic acid to γ-valerolactone in aqueous phase over Ru/MCM-49 catalysts. Ind. Eng. Chem. Res. 2020, 59, 17338-47.
63. Li, W.; Li, F.; Ning, X.; et al. Promotional effect of Mn doping on Ru/layered MCM-49 catalysts for the conversion of levulinic acid to γ-valerolactone. Carbon. Resour. Convers. 2022, 5, 185-92.
64. Dutta, S.; Yu, I. K.; Tsang, D. C.; et al. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: a critical review. Chem. Eng. J. 2019, 372, 992-1006.
65. Boronat, M.; Concepcion, P.; Corma, A.; Renz, M.; Valencia, S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal. 2005, 234, 111-8.
66. Lee, A.; Chaibakhsh, N.; Rahman, M. B. A.; Basri, M.; Tejo, B. A. Optimized enzymatic synthesis of levulinate ester in solvent-free system. Ind. Crops. Prod. 2010, 32, 246-51.
67. Joshi, H.; Moser, B. R.; Toler, J.; Smith, W. F.; Walker, T. Ethyl levulinate: a potential bio-based diluent for biodiesel which improves cold flow properties. Biomass. Bioenergy. 2011, 35, 3262-6.
68. Lu, T.; You, X.; Zong, Y.; Xu, Y.; Yang, X.; Zhou, L. Production of γ-valerolactone from ethyl levulinate over hydrothermally synthesized Sn-Beta under mild conditions. Fuel 2023, 332, 126262.
69. Qu, H.; Lu, T.; Yang, X.; Zhou, L. Promoting tin into the framework of β zeolite via stabilizing Sn species and its catalytic performance for the conversion of ethyl levulinate to γ-valerolactone. Renew. Energy. 2024, 229, 120746.
70. Zhang, Z.; Liu, Z.; Gu, Z.; Wen, Z.; Xue, B. Selective production of γ-valerolactone from ethyl levulinate by catalytic transfer hydrogenation over Zr-based catalyst. Res. Chem. Intermed. 2022, 48, 1181-98.
71. Tang, B.; Li, S.; Song, W.; et al. Hierarchical FAU-type hafnosilicate zeolite as a robust lewis acid catalyst for catalytic transfer hydrogenation. ACS. Sustain. Chem. Eng. 2019, 7, 16329-43.
72. Chen, C.; Chen, M.; Zada, B.; et al. Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts. RSC. Adv. 2016, 6, 112477-85.
73. Zhang, L.; Xi, G.; Yu, K.; Yu, H.; Wang, X. Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind. Crops. Prod. 2017, 98, 68-75.
74. Antunes, M. M.; Lima, S.; Neves, P.; et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes. J. Catal. 2015, 329, 522-37.
75. Wang, Q.; Qi, W.; Wang, W.; et al. Production of furfural with high yields from corncob under extremely low water/solid ratios. Renew. Energy. 2019, 144, 139-46.
76. Kong, X.; Zhang, X.; Han, C.; Li, C.; Yu, L.; Liu, J. Ethanolysis of biomass based furfuryl alcohol to ethyl levulinate over Fe modified USY catalyst. Mol. Catal. 2017, 443, 186-92.
77. Song, D.; An, S.; Lu, B.; Guo, Y.; Leng, J. Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl. Catal. B. Environ. 2015, 179, 445-57.
78. Wang, R.; Wang, J.; Zi, H.; Xia, Y.; Wang, H.; Liu, X. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium (IV) Schiff base complexes on mesoporous silica with isopropanol as hydrogen source. Mol. Catal. 2017, 441, 168-78.
79. Melero, J. A.; Morales, G.; Iglesias, J.; et al. Efficient one-pot production of γ-valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green. Chem. 2017, 19, 5114-21.
80. Hernández, B.; Iglesias, J.; Morales, G.; et al. One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Brønsted–Lewis Zr–Al-beta zeolite. Green. Chem. 2016, 18, 5777-81.
81. Li, X.; Yuan, X.; Xia, G.; et al. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. J. Catal. 2020, 392, 175-85.
82. López-Aguado, C.; Paniagua, M.; Iglesias, J.; Morales, G.; García-Fierro, J. L.; Melero, J. A. Zr-USY zeolite: efficient catalyst for the transformation of xylose into bio-products. Catal. Today. 2018, 304, 80-8.
83. Sun, W.; Li, H.; Wang, X.; Liu, A. Cascade upgrading of biomass-derived furfural to γ-valerolactone over Zr/Hf-based catalysts. Front. Chem. 2022, 10, 863674.
84. Winoto, H. P.; Ahn, B. S.; Jae, J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions. J. Ind. Eng. Chem. 2016, 40, 62-71.
85. Song, S.; Di, L.; Wu, G.; Dai, W.; Guan, N.; Li, L. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Appl. Catal. B. Environ. 2017, 205, 393-403.
86. Melero, J. A.; Morales, G.; Iglesias, J.; Paniagua, M.; López-Aguado, C. Rational optimization of reaction conditions for the one-pot transformation of furfural to γ-valerolactone over Zr–Al-beta zeolite: toward the efficient utilization of biomass. Ind. Eng. Chem. Res. 2018, 57, 11592-9.
87. Winoto, H. P.; Fikri, Z. A.; Ha, J.; et al. Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone. Appl. Catal. B. Environ. 2019, 241, 588-97.
88. Srinivasa Rao, B.; Krishna Kumari, P.; Koley, P.; Tardio, J.; Lingaiah, N. One pot selective conversion of furfural to γ-valerolactone over zirconia containing heteropoly tungstate supported on β-zeolite catalyst. Mol. Catal. 2019, 466, 52-9.
89. Barakov, R.; Shcherban, N.; Petrov, O.; et al. Optimization of Zr-Al-USY and Zr-Al-Beta zeolites catalysts for a one-pot cascade transformation of furfural to γ-valerolactone. Catal. Today. 2024, 426, 114406.
90. Liu, Z.; Zhang, R.; Liu, H.; et al. Effect of carbon modifier on characteristics and catalytic properties of zeolite–carbon hybrid supported Zr towards γ-valerolactone production. Fuel 2024, 359, 130380.
91. Qiu, J.; Liu, Y.; Zhang, J.; et al. One-pot cascade process for efficient upgrading of furfural to γ-valerolactone over adjustable Lewis-Brønsted bi-acidic catalyst. Ind. Crops. Prod. 2024, 214, 118474.
92. Zhu, S.; Xue, Y.; Guo, J.; Cen, Y.; Wang, J.; Fan, W. Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5. ACS. Catal. 2016, 6, 2035-42.
93. Kim, K. D.; Kim, J.; Teoh, W. Y.; Kim, J. C.; Huang, J.; Ryoo, R. Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis-Brønsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone. RSC. Adv. 2020, 10, 35318-28.
94. Shao, Y.; Guo, M.; Fan, M.; et al. Alloying nickel and cobalt with iron on ZSM-5 for tuning competitive hydrogenation reactions for selective one-pot conversion of furfural to gamma-valerolactone. Dalton. Trans. 2022, 51, 17441-53.
95. Tolek, W.; Auppahad, W.; Weerachawanasak, P.; Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. One-pot conversion of furfural to γ-valerolactone over Co- and Pt-doped ZSM-5 catalysts. Catalysts 2023, 13, 498.
96. Liu, B.; Chen, X.; Xu, Y.; Qiao, C.; Lu, Z.; Tian, Y. A combo Zr–zeolite and Zr(OH)4 mixture composition for one–pot production of γ–valerolactone from furfural. Renew. Energy. 2024, 229, 120751.
97. Zhang, H.; Yang, W.; Roslan, I. I.; Jaenicke, S.; Chuah, G. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone. J. Catal. 2019, 375, 56-67.
98. Tang, B.; Li, S.; Song, W.; Li, Y.; Yang, E. One-pot transformation of furfural into γ-valerolactone catalyzed by a hierarchical Hf-Al-USY zeolite with balanced Lewis and Brønsted acid sites. Sustain. Energy. Fuels. 2021, 5, 4724-35.
99. García, A.; Sánchez-Tovar, R.; Miguel, P. J.; et al. Catalytic production of γ-valerolactone, a biofuel precursor, from furfural in one-pot: synergistic effect between Zr and Sn. Fuel 2023, 352, 129045.
100. Jayakumari, M. T.; Krishnan, C. K. Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone. RSC. Adv. 2024, 14, 21453-63.
101. Bui, L.; Luo, H.; Gunther, W. R.; Román-Leshkov, Y. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angew. Chem. Int. Ed. Engl. 2013, 52, 8022-5.
102. Gao, X.; Yu, X.; Peng, L.; He, L.; Zhang, J. Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for γ-valerolactone production directly from furfural. Fuel 2021, 300, 120996.
103. Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy. Rev. 2014, 38, 663-76.
104. Wang, H.; Ding, G.; Liu, Y.; Zhang, J.; Li, Y.; Zhu, Y. Highly effective production of levulinic acid and γ-valerolactone through self-circulation of solvent in a continuous process. React. Chem. Eng. 2021, 6, 1811-8.
105. Lima, T. M.; Lima, C. G. S.; Rathi, A. K.; et al. Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green. Chem. 2016, 18, 5586-93.
106. Karanwal, N.; Kurniawan, R. G.; Park, J.; et al. One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru–Cu/zeolite-Y catalyst in supercritical methanol. Appl. Catal. B. Environ. 2022, 314, 121466.
107. Lin, Q. F.; Gao, Z. R.; Lin, C.; et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores. Science 2021, 374, 1605-8.
108. Paniagua, M.; Morales, G.; Melero, J. A.; et al. Understanding the role of Al/Zr ratio in Zr-Al-Beta zeolite: towards the one-pot production of GVL from glucose. Catal. Today. 2021, 367, 228-38.