REFERENCES

1. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 2014;136:14107-13.

2. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 2014;114:1709-42.

3. Wang R, Wang Z, Xiang X, Zhang R, Shi X, Sun X. MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. Chem Commun 2018;54:10340-2.

4. Xu Y, Ren K, Ren T, et al. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem Commun 2021;57:7525-8.

5. Franz RA, Applegath F. A new urea synthesis. I. The reaction of ammonia, carbon monoxide, and sulfur. J Org Chem 1961;26:3304-5.

6. Lahalih SM, Ahmed N. Effect of new soil stabilizers on the compressive strength of dune sand. Constr Build Mater 1998;12:321-8.

7. Huang HM, McDouall JJW, Procter DJ. Radical anions from urea-type carbonyls: radical cyclizations and cyclization cascades. Angew Chem Int Ed Engl 2018;57:4995-9.

8. Barzagli F, Mani F, Peruzzini M. From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem 2011;13:1267-74.

9. Pérez-fortes M, Bocin-dumitriu A, Tzimas E. CO2 utilization pathways: techno-economic assessment and market opportunities. Energy Procedia 2014;63:7968-75.

10. Giddey S, Badwal S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energ 2013;38:14576-94.

11. Smil V. Detonator of the population explosion. Nature 1999;400:415.

12. Bao D, Zhang Q, Meng FL, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 2017;29:1604799.

13. Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem 2020;12:717-24.

14. Fu J, Yang Y, Hu J. Dual-sites tandem catalysts for C–N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules. ACS Mater Lett 2021;3:1468-76.

15. Planas N, Dzubak AL, Poloni R, et al. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J Am Chem Soc 2013;135:7402-5.

16. Jouny M, Lv JJ, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat Chem 2019;11:846-51.

17. Liu J, Zhang X, Yang R, Yang Y, Wang X. Electrocatalytic reduction of CO2 to value-added chemicals via C–C/N coupling. Adv Energ Sust Res 2023;4:2200192.

18. Jiang M, Zhu M, Wang M, et al. Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano 2023;17:3209-24.

19. Chen C, He N, Wang S. Electrocatalytic C–N coupling for urea synthesis. Small Sci 2021;1:2100070.

20. Shibata M, Yoshida K, Furuya N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J Electroanal Chem 1995;387:143-5.

21. Cao N, Quan Y, Guan A, et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci 2020;577:109-14.

22. Feng Y, Yang H, Zhang Y, et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett 2020;20:8282-9.

23. Meng N, Huang Y, Liu Y, Yu Y, Zhang B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep Phys Sci 2021;2:100378.

24. Zhang C, Shi Y, Yu Y, Du Y, Zhang B. Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal 2018;8:8077-83.

25. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal 2020;10:3533-40.

26. Zhang J, Yin R, Shao Q, Zhu T, Huang X. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew Chem Int Ed Engl 2019;58:5609-13.

27. Huang Y, Yang R, Wang C, et al. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett 2022;7:284-91.

28. Long J, Chen S, Zhang Y, et al. Direct electrochemical ammonia synthesis from nitric oxide. Angew Chem Int Ed Engl 2020;59:9711-8.

29. Lv C, Zhong L, Liu H, et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat Sustain 2021;4:868-76.

30. Lv C, Lee C, Zhong L, et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 2022;16:8213-22.

31. Luo Y, Xie K, Ou P, et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat Catal 2023;6:939-48.

32. Meng N, Ma X, Wang C, et al. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022;16:9095-104.

33. Leverett J, Tran-Phu T, Yuwono JA, et al. Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3- to urea. Adv Energy Mater 2022;12:2201500.

34. Zhang X, Zhu X, Bo S, et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat Commun 2022;13:5337.

35. Wei X, Liu Y, Zhu X, et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater 2023;35:e2300020.

36. Yuan M, Chen J, Xu Y, et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ Sci 2021;14:6605-15.

37. Melen RL. A step closer to metal-free dinitrogen activation: a new chapter in the chemistry of frustrated Lewis pairs. Angew Chem Int Ed Engl 2018;57:880-2.

38. Zhang L, Liang J, Wang Y, et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew Chem Int Ed Engl 2021;60:25263-8.

39. Yuan M, Chen J, Bai Y, et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew Chem Int Ed Engl 2021;60:10910-8.

40. He K, Tadesse Tsega T, Liu X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew Chem Int Ed Engl 2019;58:11903-9.

41. Bo Y, Wang H, Lin Y, et al. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew Chem Int Ed Engl 2021;60:16085-92.

42. Liu S, Yin S, Wang Z, et al. AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Rep Phys Sci 2022;3:100869.

43. Huang Y, Wang Y, Liu Y, et al. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem Eng J 2023;453:139836.

44. Zhao Y, Ding Y, Li W, et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites. Nat Commun 2023;14:4491.

45. Lv L, Tan H, Kong Y, et al. Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis. Angew Chem Int Ed Engl 2024;63:e202401943.

46. Saravanakumar D, Song J, Lee S, Hur NH, Shin W. Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a Titania-Nafion composite electrode. ChemSusChem 2017;10:3999-4003.

47. Geng J, Ji S, Jin M, et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew Chem Int Ed Engl 2023;62:e202210958.

48. Hou T, Ding J, Zhang H, et al. FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate. Mater Chem Front 2023;7:4952-60.

49. Yu X, Zeng S, Li L, Yao H, Zheng Y, Guo X. Synergistic coupling of CO2 and NO3- for efficient electrosynthesis of urea using oxygen vacancy-rich Ru-doped CeO2 nanorods. Sci China Mater 2024;67:1543-50.

50. Yuan M, Chen J, Zhang H, et al. Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ Sci 2022;15:2084-95.

51. Chen X, Lv S, Kang J, et al. Efficient C-N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters. Proc Natl Acad Sci U S A 2023;120:e2306841120.

52. Govindan B, Annamalai K, Kumar A, Palanisamy S, Abu Haija M, Banat F. Synergistic bimetallic sites in 2D-on-2D heterostructures for enhanced C–N coupling in sustainable urea synthesis. ACS Sustain Chem Eng 2024;12:8174-87.

53. Jeon HS, Sinev I, Scholten F, et al. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J Am Chem Soc 2018;140:9383-6.

54. Zhao X, Zhao H, Sun J, Li G, Liu R. Blocking the defect sites on ultrathin Pt nanowires with Rh atoms to optimize the reaction path toward alcohol fuel oxidation. Chinese Chem Lett 2020;31:1782-6.

55. Chang F, Shan S, Petkov V, et al. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J Am Chem Soc 2016;138:12166-75.

56. Kim D, Xie C, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 2017;139:8329-36.

57. Yu Y, Wang C, Yu Y, Wang Y, Zhang B. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci China Chem 2020;63:1469-76.

58. Won DH, Shin H, Koh J, et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew Chem Int Ed Engl 2016;55:9297-300.

59. Lu L, Sun X, Ma J, et al. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew Chem Int Ed Engl 2018;57:14149-53.

60. Siva P, Prabu P, Selvam M, Karthik S, Rajendran V. Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface. Ionics 2017;23:1871-8.

61. Yang M, Wei T, He J, et al. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res 2024;17:1209-16.

62. Ma S, Lan Y, Perez GM, Moniri S, Kenis PJ. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 2014;7:866-74.

63. Wang H, Zhang F, Jin M, et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater Today Phys 2023;30:100944.

64. Zhao Y, Zhao Y, Shi R, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv Mater 2019;31:e1806482.

65. Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat Commun 2019;10:2877.

66. Han Z, Choi C, Hong S, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl Catal B Environ 2019;257:117896.

67. Stephan DW. Frustrated Lewis Pairs. J Am Chem Soc 2015;137:10018-32.

68. Dong Y, Ghuman KK, Popescu R, et al. Tailoring surface frustrated Lewis pairs of In2O3-x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3. Adv Sci 2018;5:1700732.

69. Shan W, Liu R, Zhao H, et al. In Situ surface-enhanced raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano 2020;14:11363-72.

70. He Y, He Q, Wang L, et al. Self-gating in semiconductor electrocatalysis. Nat Mater 2019;18:1098-104.

71. Xu L, Wang C, Zhang X, et al. NOx sensitivity of conductometric In(OH)3 sensors operated at room temperature and transition from p- to n- type conduction. Sensor Actuat B Chem 2017;245:533-40.

72. Gavali DS, Kawazoe Y, Thapa R. First-principles identification of interface effect on Li storage capacity of C3N/graphene multilayer heterostructure. J Colloid Interface Sci 2022;610:80-8.

73. Roy P, Pramanik A, Sarkar P. Dual-silicon-doped graphitic carbon nitride sheet: an efficient metal-free electrocatalyst for urea synthesis. J Phys Chem Lett 2021;12:10837-44.

74. Dutta S, Pati SK. Urea production on metal-free dual silicon doped C9N4 nanosheet under ambient conditions by electrocatalysis: a first principles study. Chemphyschem 2023;24:e202200453.

75. Liu S, Jin M, Sun J, et al. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem Eng J 2022;437:135294.

76. Wu H, Fei G, Gao X, et al. Research progress on preparation and application of polyaniline and its composite materials. China Powder Sci Technol 2023;29:70-80.

77. Jiao L, Zhu J, Zhang Y, et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J Am Chem Soc 2021;143:19417-24.

78. Chen K, Cao M, Ni G, et al. Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Appl Catal B Environ 2022;306:121093.

79. Zhang H, Wang C, Luo H, Chen J, Kuang M, Yang J. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew Chem Int Ed Engl 2023;62:e202217071.

80. Zhu C, Geng Y, Yao X, Zhu G, Su Z, Zhang M. Fascinating electrocatalysts with dispersed di-metals in MN3-M’N4 moiety as two active sites separately for N2 and CO2 reduction reactions and jointly for C–N coupling and urea production. Small Methods 2023;7:e2201331.

81. Shi MM, Bao D, Wulan BR, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater 2017;29:1606550.

82. Shi M, Bao D, Li S, Wulan B, Yan J, Jiang Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater 2018;8:1800124.

83. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

84. Shibata M, Furuya N. Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J Electroanal Chem 2001;507:177-84.

85. Yang JP, Zhang FZ, Chen J. Structural design and application of fiber-based electrocatalytic materials. China Powder Sci Technol 2024;30:161-70.

86. Kayan DB, Köleli F. Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes. Appl Catal B Environ 2016;181:88-93.

87. Tao H, Sun X, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem Sci 2018;9:483-7.

88. Zhang Q, Wang K, Zhang M, et al. Electronic structure optimization boosts Pd nanocrystals for ethanol electrooxidation realized by Te doping. CrystEngComm 2022;24:5580-7.

89. Zhu X, Zhou X, Jing Y, Li Y. Electrochemical synthesis of urea on MBenes. Nat Commun 2021;12:4080.

90. Qiu W, Qin S, Li Y, et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew Chem Int Ed Engl 2024;63:e202402684.

91. Wang XL, Dong LZ, Qiao M, et al. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew Chem Int Ed Engl 2018;57:9660-4.

92. König M, Vaes J, Klemm E, Pant D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 2019;19:135-60.

93. Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019;365:367-9.

94. Chen S, Lian K, Liu W, et al. Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res 2023;16:9214-30.

95. Wang L, Wu J, Wang S, Liu H, Wang Y, Wang D. The reformation of catalyst: from a trial-and-error synthesis to rational design. Nano Res 2024;17:3261-301.

96. Li R, Wang D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res 2022;15:6888-923.

97. Qi D, Lv F, Wei T, et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res Energy 2022;1:e9120022.

98. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.

99. Chen C, Li S, Zhu X, et al. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 2023;5:e345.

100. Wang X, Zhang G, Yin W, et al. Metal–organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy 2022;4:246-81.

101. Zheng X, Li B, Wang Q, Wang D, Li Y. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res 2022;15:7806-39.

102. Liu X, Chen M, Ma J, et al. Advances in the synthesis strategies of carbon⁃based single-atom catalysts and their electrochemical applications. China Powder Sci Technol 2024;30:35-45.

103. Liu X, Schlexer P, Xiao J, et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat Commun 2019;10:32.

104. Yang Y, Zhang W, Chen K, et al. Research progress on adsorption mechanism of radioactive iodine by metal-organic framework composites. China Powder Sci Technol 2024;30:151-60.

105. Fan Q, Su J, Sun T, et al. Advances of the functionalized carbon nitrides for electrocatalysis. Carbon Energy 2022;4:211-36.

106. Gan T, Wang D. Atomically dispersed materials: ideal catalysts in atomic era. Nano Res 2024;17:18-38.

107. Cao N, Zhang N, Wang K, Yan K, Xie P. High-throughput screening of B/N-doped graphene supported single-atom catalysts for nitrogen reduction reaction. Chem Synth 2023;3:23.

108. Xiong H, Yu P, Chen K, et al. Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt. Nat Catal 2024;7:785-95.

109. Shi Z, Chen J, Li K, Liu Y, Tang Y, Zhang L. Flue gas to urea: a path of flue gas resourceful utilization through electrocatalysis. Chem Eng J 2023;461:141933.

110. Ding S, Wang H, Dai X, et al. Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese J Struc Chem 2024;43:100302.

111. Ji Y, Yu Z, Yan L, Song W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci Technol 2023;29:100-7.

112. Zhang C, Xu H, Wang Y, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Sci Technol 2023;29:80-93.

113. Wang H, Niu X, Liu W, et al. S-block metal Mg-mediated Co–N–C as efficient oxygen electrocatalyst for durable and temperature-adapted Zn-air batteries. Adv Sci 2024:e2403865.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/