REFERENCES

1. NHTSA. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey; 2018. Available from: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506.

2. Zhang T, Zhan J, Shi J, Xin J, Zheng N. Human-like decision-making of autonomous vehicles in dynamic traffic scenarios. IEEE-CAA J Automatic. 2023;10:1905-17.

3. Hafner MR, Cunningham D, Caminiti L, Del Vecchio D. Cooperative collision avoidance at intersections: algorithms and experiments. IEEE Trans Intell Transp Syst. 2013;14:1162-75.

4. Dario B. Game theory: models, numerical methods and applications. Found Trends Syst Co. 2014;1:379-522.

5. Ramos M, Moura M, Lins I, Ramos F. The Use of Game Theory for Autonomous Systems Safety: An Overview. In: Castanier B, Cepin M, Bigaud D, Berenguer C, editors. ESREL 2021: Proceedings of the 31st European Safety and Reliability Conference; 2021 Sep; Angers, Ireland. Singapore: Research Publishing; 2021. pp. 2494–501.

6. Qurashi JM, Ikram MJ, Jambi K, Eassa FE, Khemakhem M. Autonomous Vehicles: Security Challenges and Game theory-based Countermeasures. In: 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC); 2023 Jan 23-25; Jeddah, Saudi Arabia. USA: IEEE; 2023. pp. 1–6.

7. Li Y. A review of how game theory is applied in transportation analysis. In: Proceedinds of 2022 5th International Conference on Financial Management, Education and Social Science (FMESS 2022); 2022 Sep 3-5; Hohhot, China. UK: Cambridge Scholars Publishing; 2022. pp. 321–29.

8. Di X, Shi R. A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning. Transport Res Part C: Emerg Technol. 2021;125:103008.

9. Ji A, Levinson D. A review of game theory models of lane changing. Transportmetrica A. 2020;16:1628-47.

10. Rune E. A review of game-theoretic models of road user behavior. Accid Anal Prev. 2014;62:388-96.

11. Wang W, Wang L, Zhang C, Liu C, Sun L. Social interactions for autonomous driving: A review and perspectives. Foundations and Trends in Robotics. 2022;10:198-376.

12. Kauffmann N, Winkler F, Naujoks F, Vollrath M. What Makes a Cooperative Driver?" Identifying parameters of implicit and explicit forms of communication in a lane change scenario. Transport Res Part F: traffic psychology and behavior. 2018;58:1031-42.

13. Markkula G, Madigan R, Nathanael D, Portouli E, Lee Y, et al. Defining interactions: a conceptual framework for understanding interactive behavior in human and automated road traffic. Theor Iss Ergon Sci. 2020;21:728-52.

14. Choudhury CF, Ben-Akiva ME, Toledo T, Lee G, Rao A. Modeling cooperative lane changing and forced merging behavior. In: 86th Annual Meeting of the Transportation Research Board; 2007 Jan; Washington, DC; 2007. pp. 1–23.

15. Risser R. Behavior in traffic conflict situations. Accid Anal Prev. 1985;17:179-97.

16. Domeyer J, Dinparastdjadid A, Lee JD, Douglas G, Alsaid A, et al. Proxemics and kinesics in automated vehicle-pedestrian communication: Representing ethnographic observations. Accid Anal Prev. 2019;2673:70-81.

17. Schwarting W, Pierson A, Alonso-Mora J, Karaman S, Rus D. Social behavior for autonomous vehicles. Proceedings of the National Academy of Sciences. 2019;116:24972-78.

18. Roy D, Winkler D, Mohan C, Fukuda A. Detection of Collision-Prone Vehicle Behavior at Intersections using Siamese Interaction LSTM. IEEE Transactions on Intelligent Transportation Systems. 2022;23:1031-42.

19. Li N, Yao Y, Kolmanovsky I, Atkins E, Girard AR. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections. IEEE Trans Intell Transp Syst. 2020;23:1428-42.

20. Tian R, Li N, Kolmanovsky I, Yildiz Y, Girard AR. Game-theoretic modeling of traffic in unsignalized intersection network for autonomous vehicle control verification and validation. IEEE Trans Intell Transp Syst. 2020;23:2211-26.

21. Crosato L, Tian K, Shum H, Shum H, Ho E. Social Interaction-Aware Dynamical Models and Decision-Making for Autonomous Vehicles. Adv Intell Syst. 2024;6:2300575.

22. Tabone W, de Winter J, Ackermann C, Bärgman J, Baumann M, et al. Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transp Res Interdiscip Persp. 2021;9:100293.

23. Yu H, Tseng HE, Langari R. A human-like game theory-based controller for automatic lane changing. Transport Res C-EMER. 2018;88:140-58.

24. Zhang Y, Hang P, Huang C, Lv C. Human-Like Interactive Behavior Generation for Autonomous Vehicles: A Bayesian Game-Theoretic Approach with Turing Test. Adv Intell Syst. 2022;4:2100211.

25. Chen X, Sun J, Ma Z, Sun J, Zheng Z. Investigating the long-and short-term driving characteristics and incorporating them into car-following models. Transport Res Part C: Emerg Technol. 2020;117:102698.

26. Hang P, Lv C, Huang C, Cai J, Hu Z, et al. An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors. IEEE Trans Veh Technol. 2020;69:14458-69.

27. Hang P, Lv C, Xing Y, Huang C, Hu Z. Human-like decision making for autonomous driving: A noncooperative game theoretic approach. IEEE Trans Intell Transp Syst. 2020;22:2076-87.

28. Liu M, Wan Y, Lewis FL, Nageshrao S, Filev D. A three-level game-theoretic decision-making framework for autonomous vehicles. IEEE Trans Intell Transp Syst. 2022;23:20298-308.

29. Hang P, Huang C, Hu Z, Lv C. Decision Making for Connected Automated Vehicles at Urban Intersections Considering Social and Individual Benefits. IEEE Trans Intell Transp Syst. 2022;23:22549-62.

30. Li D, Liu G, Xiao B. Human-like driving decision at unsignalized intersections based on game theory. P I Mech Eng D-J Aut. 2023;237:159-73.

31. Sagberg F, Selpi, Bianchi Piccinini GF, Engström J. A review of research on driving styles and road safety. Human factors. 2015;57:1248-75.

32. Liu J, Qi X, Hang P, Sun J. Enhancing Social Decision-making of autonomous vehicles: A mixed-strategy game approach with interaction orientation identification. IEEE Trans Veh Technol. 2024;73:12385-98.

33. Negash N, Yang J. Driver Behavior Modeling Toward Autonomous Vehicles: Comprehensive Review. IEEE Access. 2023;11:22788-821.

34. Qin Z, Ji A, Sun Z, Wu G, Hao P, et al. Game Theoretic Application to Intersection Management: A Literature Review. IEEE Transactions on Intelligent Vehicles. 2024:1-19.

35. Farooqui AD, Niazi MA. Game theory models for communication between agents: a review. Complex Adapt Syst Model. 2016;4:1-31.

36. Li J, Niazi D, Zhang M. Equilibrium modeling of mixed autonomy traffic flow based on game theory. Transportation Research Part B: Methodological. 2022;166:110-27.

37. Nan J, Deng W, Zheng B. Intention Prediction and Mixed Strategy Nash Equilibrium-Based Decision-Making Framework for Autonomous Driving in Uncontrolled Intersection. IEEE Transactions on Vehicular Technology. 2022;71:10316-26.

38. Yoo JH, Langari R. Stackelberg game based model of highway driving. In: ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference; 2012 Oct 17–19; Florida, USA. USA: ASME; 2012. pp. 499–508.

39. Yoo JH, Langari R. A stackelberg game theoretic driver model for merging. In: Proceedings of the ASME 2013 Dynamic Systems and Control Conference; 2013 Oct 21-23; Palo Alto, California, USA. USA: ASME; 2013. p. V002T30A003.

40. Kim C, Langari R. Game theory based autonomous vehicles operation. Int J Vehicle Des. 2014;65:360-83.

41. Coskun S, Zhang Q, Langari R. Receding horizon markov game autonomous driving strategy. In: 2019 American Control Conference (ACC); 2019 Jul 10-12; Philadelphia, PA, USA. USA: IEEE; 2019. pp. 1367–1374.

42. Yoo J, Langari R. A predictive perception model and control strategy for collision-free autonomous driving. IEEE Trans Intell Transp Syst. 2019;20:4078-91.

43. Zhang Q, Langari R, Tseng HE, Filev D, Szwabowski S, et al. A game theoretic model predictive controller with aggressiveness estimation for mandatory lane change. IEEE Trans Intelligent Vehicles. 2019;5:75-89.

44. Yoo J, Langari R. A game-theoretic model of human driving and application to discretionary lane-changes; 2020. ArXiv preprint arXiv: 2003.09783.

45. Yoo J, Langari R. A Stackelberg Game Theoretic Model of Lane-Merging; 2020. 10.48550/arXiv.2003.09786.

46. Zhang Q, Filev D, Tseng HE, Szwabowski S, Langari R. A game theoretic four-stage model predictive controller for highway driving. In: 2019 American Control Conference (ACC); 2019 Jul 10-12; Philadelphia, PA, USA. USA: IEEE; 2019. pp. 1375–1381.

47. Zhang Q, Filev D, Tseng HE, Szwabowski S, Langari R. Addressing Mandatory Lane Change Problem with Game Theoretic Model Predictive Control and Fuzzy Markov Chain. In: 2018 Annual American Control Conference (ACC); 2010 Jun 27-29; Milwaukee, WI, USA. USA: IEEE; 2018. pp. 4764–71.

48. Banjanovic-Mehmedovic L, Halilovic E, Bosankic I, Kantardzic M, Kasapovic S. Autonomous vehicle-to-Vehicle (V2V) decision making in roundabout using game theory. International journal of advanced computer science and applications. 2016:7.

49. Liu H, Xin W, Adam Z, Ban J. A game theoretical approach for modeling merging and yielding behavior at freeway on-ramp sections. Transport Traffic Theory. 2007;3:197-211.

50. Talebpour A, Mahmassani HS, Hamdar SH. Modeling lane-changing behavior in a connected environment: A game theory approach. Transport Res Procedia. 2015;7:420-40.

51. Liu C, Tomizuka M. Safe exploration: Addressing various uncertainty levels in human robot interactions. In: 2015 American Control Conference (ACC); 2015 Jul 01-03; Chicago, IL, USA. USA: IEEE; 2015. pp. 465–70.

52. Liu C, Tomizuka M. Enabling safe freeway driving for automated vehicles. In: American Control Conference (ACC); 2016 Jul 06-08; Boston, MA, USA. USA: IEEE; 2016. pp. 3461–3467.

53. Liu K, Li N, Tseng HE, Kolmanovsky I, Girard A. Interaction-aware trajectory prediction and planning for autonomous vehicles in forced merge scenarios. IEEE Trans Intell Transp Syst. 2022;24:474-88.

54. Sadigh D, Landolfi N, Sastry SS, Seshia SA, Dragan AD. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state 2018;42:1405–1426.

55. Sun L, Zhan W, Tomizuka M, Dragan AD. Courteous autonomous cars. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. USA: IEEE; 2018. pp. 663–670.

56. Murgovski N, de Campos G, Sjoberg J. Convex modeling of conflict resolution at traffic intersections. In: 2015 54th IEEE conference on decision and control (CDC); 2015 Dec 15-18; Osaka, Japan. USA: IEEE; 2015. pp. 4708–13.

57. Liu C, Lin CW, Shiraishi S, Tomizuka M. Distributed conflict resolution for connected autonomous vehicles. IEEE Trans Veh Technol. 2017;3:18-29.

58. Liu K, Li N, Tseng HE, Kolmanovsky I, Girard A, et al. Cooperation-aware decision making for autonomous vehicles in merge scenarios. In: 2021 60th IEEE Conference on Decision and Control (CDC); 2021 Dec 14-17; Austin, TX, USA. USA: IEEE; 2021. pp. 5006–12.

59. Espinoza JLV, Liniger A, Schwarting W, Rus D, Van Gool L. Deep Interactive Motion Prediction and Planning: Playing Games with Motion Prediction Models. In: Proceedings of The 4th Annual Learning for Dynamics and Control Conference; 2022 Jun 23-24. New York: PMLR; 2022. pp. 1006–1019.

60. Ozkan MF, Ma Y. Socially Compatible Control Design of Automated Vehicle in Mixed Traffic. IEEE Control Systems Letters. 2022;6:1730-35.

61. Oyler DW, Yildiz Y, Girard AR, Li NI, Kolmanovsky IV. A game theoretical model of traffic with multiple interacting drivers for use in autonomous vehicle development. In: 2016 American Control Conference (ACC); 2016 July 6-8; Boston, MA, USA. USA: IEEE; 2016. pp. 1705–10.

62. Li N, Oyler D, Zhang M, Yildiz Y, Girard A, et al. Hierarchical reasoning game theory based approach for evaluation and testing of autonomous vehicle control systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC); 2016 Dec 12-14; Las Vegas, NV, USA. USA: IEEE; 2016. pp. 727–33.

63. Li N, Oyler DW, Zhang M, Yildiz Y, Kolmanovsky I, et al. Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans Contr Syst Technol. 2017;26:1782-97.

64. Wilde GJ. Social interaction patterns in driver behavior: An introductory review. Human factors. 1976;18:477-92.

65. Wilde GS. Immediate and delayed social interaction in road user behaviour. Applied Psychology. 1980;29:439-60.

66. Jia S, Zhang Y, Li X, Na X, Wang Y, et al. Interactive Decision-Making With Switchable Game Modes for Automated Vehicles at Intersections. IEEE Transactions on Intelligent Transportation Systems. 2023;24:11785-99.

67. Huang S, Chan S, Ren W. Mixed traffic control involving manually-controlled and automatically-controlled vehicles in IVHS. Advances in Intelligent Autonomous Systems. 1999;18:507-528.

68. Tian R, Li S, Li N, Kolmanovsky I, Girard A, et al. Adaptive Game-Theoretic Decision Making for Autonomous Vehicle Control at Roundabouts. In: 2018 IEEE Conference on Decision and Control (CDC); 2018 Dec 17-19; Miami, FL, USA. USA: IEEE; 2018. pp. 321–26.

69. Li N, Kolmanovsky I, Girard A, Yildiz Y. Game theoretic modeling of vehicle interactions at unsignalized intersections and application to autonomous vehicle control. In: 2018 Annual American Control Conference (ACC); 2018 Jun 27-29; Milwaukee, WI, USA. USA: IEEE; 2018. p. V002T30A003.

70. Sun L, Zhan W, Tomizuka M. Probabilistic prediction of interactive driving behavior via hierarchical inverse reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 04-07; Maui, HI, USA. USA: IEEE; 2018. pp. 2111–17.

71. McClintock CG, Allison ST. Social value orientation and helping behavior. J Appl Soc Psychol. 1989;19:353-62.

72. Zhao X, Tian Y, Sun J. Yield or Rush? Social-Preference-Aware Driving Interaction Modeling Using Game-Theoretic Framework. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC); 2021 Sep 19-22; Indianapolis, IN, USA. USA: IEEE; 2021. p. 453–459.

73. Toghi B, Valiente R, Sadigh D, Pedarsani R, Fallah YP. Social Coordination and Altruism in Autonomous Driving. IEEE Trans Intell Transp Syst. 2022;23:24791-804.

74. Toghi B, Valiente R, Sadigh D, Pedarsani R, Fallah Y. Altruistic Maneuver Planning for Cooperative Autonomous Vehicles Using Multi-agent Advantage Actor-Critic; 2021. ArXiv preprint arXiv: 2107.05664.

75. Lee N, Choi W, Vernaza P, Choy CB, Torr PH, et al. Desire: Distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR); 2017; Honolulu, HI, USA. USA: IEEE; 2017. pp. 336–45.

76. Fisac JF, Bronstein E, Stefansson E, Sadigh D, Sastry SS, et al. Hierarchical game-theoretic planning for autonomous vehicles. In: 2019 International Conference on Robotics and Automation (ICRA); 2010 May 20-24; Montreal, QC, Canada. USA: IEEE; 2019. pp. 9590–9596.

77. Liu M, Tseng HE, Filev D, Girard A, Kolmanovsky I. Safe and human-like autonomous driving: A predictor-corrector potential game approach. IEEE Trans Contr Syst Technol. 2024;32:834-48.

78. Wang M, Hoogendoorn SP, Daamen W, van Arem B, Happee R. Game theoretic approach for predictive lane-changing and car-following control.

79. Shu K, Mehrizi RV, Li S, Pirani M, Khajepour A. Human inspired autonomous intersection handling using game theory. IEEE Trans Intell Transp Syst. 2023;24:11360-71.

80. Fridovich-Keil D, Ratner E, Peters L, Dragan AD, Tomlin CJ. Efficient iterative linear-quadratic approximations for nonlinear multi-player general-sum differential games. In: 2020 IEEE Int. Conf. Robot. Autom. (ICRA); 2020 May 31; Paris, France. USA: IEEE; 2020. pp. 1475–81.

81. Fridovich-Keil D, Ratner E, Peters L, Tomlin CJ. An iterative quadratic method for general-sum differential games with feedback linearizable dynamics. In: 2020 IEEE Int. Conf. Robot. Autom. (ICRA); 2020 May 31; Paris, France. USA: IEEE; 2020. p. 2216–2222.

82. Li S, Li N, Girard A, Kolmanovsky I. Decision making in dynamic and interactive environments based on cognitive hierarchy theory, Bayesian inference, and predictive control. In: 2019 IEEE 58th Conference on Decision and Control (CDC); 2019 December 11-13; Nice, France. USA: IEEE; 2019. pp. 2181–87.

83. Liu M, Kolmanovsky I, Tseng HE, Huang S, Filev D, et al. Potential Game-based decision-making for autonomous driving. IEEE Trans Intell Transp Syst. 2023;24:8014-27.

84. Ozkan MF, Ma Y. Socially-compatible behavior design of autonomous vehicles with verification on real human data. IEEE Robotics and Automation Letters. 2021;6:3421-28.

85. Lopez VG, Lewis FL, Liu M, Wan Y, Nageshrao S, et al. Game-Theoretic Lane-Changing Decision Making and Payoff Learning for Autonomous Vehicles. IEEE Trans Veh Technol. 2022;71:3609-20.

86. Li D, Zhang J, Liu G. Autonomous Driving Decision Algorithm for Complex Multi-Vehicle Interactions: An Efficient Approach Based on Global Sorting and Local Gaming. IEEE Transactions on Intelligent Transportation Systems. 2024;25:6927-37.

87. Sadigh D, Sastry S, Seshia SA, Dragan AD. Planning for autonomous cars that leverage effects on human actions. Robotics: Science and systems. 2016;2:1-9.

88. Lazar DA, Pedarsani R, Chandrasekher K, Sadigh D. Maximizing road capacity using cars that influence people. In: 2018 IEEE Conference on Decision and Control (CDC); 2018 Dec 17–19; Miami, FL, USA. USA: IEEE; 2018. pp. 1801–8.

89. Hubmann C, Becker M, Althoff D, Lenz D, Stiller C. Decision making for autonomous driving considering interaction and uncertain prediction of surrounding vehicles. In: Proc. 2017 IEEE Intelligent Vehicles Symposium; 2017 Jun 11-14; Los Angeles, CA, USA. USA: IEEE; 2017. pp. 1671–78.

90. Li D, Liu A, Pan H, Chen W. Safe, efficient and socially-compatible decision of automated vehicles: A case study of unsignalized intersection driving. Automotive Innovation. 2023;6:281-96.

91. Jain G, Kumar A, Bhat SA. Recent developments of game theory and reinforcement learning approaches: A systematic review. IEEE Access. 2024;12:9999-0011.

92. Sutton R, Barto A. Introduction to Reinforcement Learning Cambridge: MIT Press; 1998.

93. Zhang L, Han S, Grammatico S. Automated Lane Merging via Game Theory and Branch Model Predictive Control. IEEE Transactions on Control Systems Technology. 2024:1-12.

94. Chen X, Li Z, Di X. Social Learning In Markov Games: Empowering Autonomous Driving. In: 2022 IEEE Intelligent Vehicles Symposium (IV). USA: IEEE; 2022. pp. 78–483.

95. Li W, Qiu F, Li L, Zhang Y, Wang K. Simulation of Vehicle Interaction Behavior in Merging Scenarios: A Deep Maximum Entropy-Inverse Reinforcement Learning Method Combined With Game Theory. IEEE Transactions on Intelligent Vehicles. 2024;9:1079-93.

96. Zhou X, Peng Z, Xie Y, Liu M, Ma J. Game-Theoretic Driver Modeling and Decision-Making for Autonomous Driving with Temporal-Spatial Attention-Based Deep Q-Learning. IEEE Transactions on Intelligent Vehicles. 2024:1-17.

97. Littman ML. Markov games as a framework for multi-agent reinforcement learning. In: Machine learning proceedings. Amsterdam: Elsevier; 1994. pp. 157–63.

98. Liu C, Lin CW, Shiraishi S, Tomizuka M. Improving efficiency of autonomous vehicles by v2v communication. In: 2018 Annual American Control Conference (ACC); 2018 Jun 27-29; Milwaukee, WI, USA. USA: IEEE; 2018. pp. 4778–4783.

99. Li N, Girard A, Kolmanovsky I. Stochastic predictive control for partially observable markov decision processes with time-joint chance constraints and application to autonomous vehicle control. J Dyn Sys, Meas, Control. 2019;141:071007.

100. Qiao Z, Muelling K, Dolan J, PNovalanisamy P, Mudalige P. Pomdp and hierarchical options MDP with continuous actions for autonomous driving at intersections. In: Proc. 21st Int. Conf. Intelligent Transportation Systems; 2018 Nov 04-07; Maui, HI, USA. USA: IEEE; 2018. pp. 2377–82.

101. Cunningham AG, Galceran E, Mehta D, Ferrer G, Eustice RM, et al. Mpdm: Multi-policy decision-making from autonomous driving to social robot navigation Cham: Springer International Publishing; 2019.

102. Nishi T, Doshi P, Prokhorov D. Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning. IEEE Trans Intelligent Vehicles. 2019;4:287-97.

103. Sadigh D, Sastry SS, Seshia SA. Verifying robustness of human-aware autonomous cars. IFAC-PapersOnLine. 2019;51:131-38.

104. Sankar GS, Han K. Adaptive robust game-theoretic decision making strategy for autonomous vehicles in highway. IEEE Trans Veh Technol. 2020;69:14484-93.

105. Ho J, Ermon S. Generative Adversarial Imitation Learning. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2016.

106. Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations. Physical Rev E. 2000;62:1805-24.

107. Makaba T, Doorsamy W, Paul B. Bayesian network-based framework for cost-implication assessment of road traffic collisions. Int J ITS Res. 2021;19:240-53.

108. Talebpour A, Mahmassani HS, Hamdar SH. Multiregime sequential risk-taking model of car-following behavior: Specification, calibration, and sensitivity analysis. Transportation research record. 2011;2260:60-66.

109. Wei C, He Y, Tian H, Lv Y. Game theoretic merging behavior control for autonomous vehicle at highway on-ramp. IEEE Transactions on Intelligent Transportation Systems. 2022;23:21127-36.

110. Ji K, Orsag M, Han K. Lane-Merging Strategy for a Self-driving car in dense traffic using the stackelberg game approach. Electronics. 2021;10:894.

111. Wang H, Wang W, Yuan S, Li X, Sun L. On social interactions of merging behaviors at highway on-ramps in congested traffic. IEEE Trans Intell Transp Syst. 2021;23:11237-48.

112. De Dreu CK, Van Lange PA. The impact of social value orientations on negotiator cognition and behavior. Pers Soc Psychol B. 1995;21:1178-88.

113. Pletzer JL, Balliet D, Joireman J, Kuhlman DM, Voelpel SC, et al. Socal value orientation, expectations, and cooperation in social dilemmas: A meta-analysis. Eur J Personality. 2018;32:62-83.

114. Rahmati Y, Talebpour A. Towards a collaborative connected, automated driving environment: A game theory based decision framework for unprotected left turn maneuvers. In: 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11–14; Los Angeles, CA, USA. USA: IEEE; 2017. pp. 1316–21.

115. Rahmati Y, Talebpour A, Mittal A, Fishelson J. Game Theory-Based Framework for Modeling Human-Vehicle Interactions on the Road. Transportation research record. 2020;2674:701-13.

116. Gkartzonikas C, Gkritza K. What have we learned? A review of stated preference and choice studies on autonomous vehicles. Transport Res Part C: Emerg Technol. 2019;98:323-37.

117. Lemmer M, Shu J, S S, Hohmann S. Maneuver Based Modeling of Driver Decision Making using Game-Theoretic Planning. In: 2021 IEEE International Conference on Systems Man, and Cybernetics (SMC). USA: IEEE; 2021. p. 1332–1338.

118. Zhu L, Yang D, Cheng Z, Yu X, Zheng B. A Model to Manage the Lane-Changing Conflict for Automated Vehicles Based on Game Theory. Sustainability. 2023;15:3063.

119. Huang H, Zheng X, Liu Y, Zhao S, Wang Y, et al. Intelligent Adaptive Decision-Making for Autonomous Vehicles: A Learning-Enhanced Game-Theoretic Approach in Interactive Scenarios. In: 2023 3rd International Conference on Digital Society and Intelligent Systems (DSInS). USA: IEEE; 2023. pp. 258–64.

120. Dai S, Bae S, Isele D. Game Theoretic Decision Making by Actively Learning Human Intentions Applied on Autonomous Driving 2023:1–6.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/