REFERENCES

1. Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell 2023;186:1708-28.

2. Nardin S, Mora E, Varughese FM, et al. Breast cancer survivorship, quality of life, and late toxicities. Front Oncol 2020;10:864.

3. Al-Ghazal SK, Fallowfield L, Blamey RW. Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction. Eur J Cancer 2000;36:1938-43.

4. Yueh JH, Slavin SA, Adesiyun T, et al. Patient satisfaction in postmastectomy breast reconstruction: a comparative evaluation of DIEP, TRAM, latissimus flap, and implant techniques. Plast Reconstr Surg 2010;125:1585-95.

5. Yun JH, Diaz R, Orman AG. Breast reconstruction and radiation therapy. Cancer Control 2018;25:1073274818795489.

6. Pien I, Caccavale S, Cheung MC, et al. Evolving trends in autologous breast reconstruction: is the deep inferior epigastric artery perforator flap taking over? Ann Plast Surg 2016;76:489-93.

7. Wade RG, Razzano S, Sassoon EM, Haywood RM, Ali RS, Figus A. Complications in DIEP flap breast reconstruction after mastectomy for breast cancer: a prospective cohort study comparing unilateral versus bilateral reconstructions. Ann Surg Oncol 2017;24:1465-74.

8. Knoedler S, Kauke-Navarro M, Knoedler L, et al. The significance of timing in breast reconstruction after mastectomy: an ACS-NSQIP analysis. J Plast Reconstr Aesthet Surg 2024;89:40-50.

9. DeFazio MV, Arribas EM, Ahmad FI, et al. Application of three-dimensional printed vascular modeling as a perioperative guide to perforator mapping and pedicle dissection during abdominal flap harvest for breast reconstruction. J Reconstr Microsurg 2020;36:325-38.

10. Ogunleye AA, Deptula PL, Inchauste SM, et al. The utility of three-dimensional models in complex microsurgical reconstruction. Arch Plast Surg 2020;47:428-34.

11. Chae MP, Hunter-Smith DJ, Chung RD, Smith JA, Rozen WM. 3D-printed, patient-specific DIEP flap templates for preoperative planning in breast reconstruction: a prospective case series. Gland Surg 2021;10:2192-9.

12. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP flap breast reconstruction. Plast Reconstr Surg Glob Open 2023;11:e5282.

13. Cevik J, Seth I, Rozen WM. Transforming breast reconstruction: the pioneering role of artificial intelligence in preoperative planning. Gland Surg 2023;12:1271-5.

14. Jacobson NM, Carerra E, Treat A, McDonnell M, Mathes D, Kaoutzanis C. Hybrid modeling techniques for 3D printed deep inferior epigastric perforator flap models. 3D Print Med 2023;9:26.

15. Mehta S, Byrne N, Karunanithy N, Farhadi J. 3D printing provides unrivalled bespoke teaching tools for autologous free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2016;69:578-80.

16. Cholok DJ, Fischer MJ, Leuze CW, Januszyk M, Daniel BL, Momeni A. Spatial fidelity of microvascular perforating vessels as perceived by augmented reality virtual projections. Plast Reconstr Surg 2024;153:524-34.

17. Hummelink S, Hoogeveen YL, Schultze Kool LJ, Ulrich DJO. A new and innovative method of preoperatively planning and projecting vascular anatomy in DIEP flap breast reconstruction: a randomized controlled trial. Plast Reconstr Surg 2019;143:1151e-8e.

18. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast 2020;50:19-24.

19. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction model for flap failure in microvascular breast reconstruction. Ann Surg Oncol 2020;27:3466-75.

20. Khan MTA, Won BW, Baumgardner K, et al. Literature review: robotic-assisted harvest of deep inferior epigastric flap for breast reconstruction. Ann Plast Surg 2022;89:703-8.

21. Innocenti M, Malzone G, Menichini G. First-in-human free flap tissue reconstruction using a dedicated microsurgical robotic platform. Plast Reconstr Surg 2023;151:1078-82.

22. Ghandourah HSH, Schols RM, Wolfs JAGN, Altaweel F, van Mulken TJM. Robotic microsurgery in plastic and reconstructive surgery: a literature review. Surg Innov 2023;30:607-14.

23. Bhullar H, Hunter-Smith DJ, Rozen WM. Fat necrosis after DIEP flap breast reconstruction: a review of perfusion-related causes. Aesthetic Plast Surg 2020;44:1454-61.

24. Pruimboom T, van Kuijk SMJ, Qiu SS, et al. Optimizing indocyanine green fluorescence angiography in reconstructive flap surgery: a systematic review and ex vivo experiments. Surg Innov 2020;27:103-19.

25. Pruimboom T, Lindelauf AAMA, Felli E, et al. Perioperative hyperspectral imaging to assess mastectomy skin flap and DIEP flap perfusion in immediate autologous breast reconstruction: a pilot study. Diagnostics 2022;12:184.

26. Proulx ST, Luciani P, Derzsi S, et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 2010;70:7053-62.

27. Prabhu AS, Carbonell A, Hope W, et al. Robotic inguinal vs transabdominal laparoscopic inguinal hernia repair: the RIVAL randomized clinical trial. JAMA Surg 2020;155:380-7.

28. Brassetti A, Ragusa A, Tedesco F, et al. Robotic surgery in urology: history from PROBOT® to HUGOTM. Sensors 2023;23:7104.

29. Aitzetmüller MM, Klietz ML, Dermietzel AF, Hirsch T, Kückelhaus M. Robotic-assisted microsurgery and its future in plastic surgery. J Clin Med 2022;11:3378.

30. Roy N, Alessandro CJ, Ibelli TJ, et al. The expanding utility of robotic-assisted flap harvest in autologous breast reconstruction: a systematic review. J Clin Med 2023;12:4951.

31. Daar DA, Anzai LM, Vranis NM, et al. Robotic deep inferior epigastric perforator flap harvest in breast reconstruction. Microsurgery 2022;42:319-25.

32. Wittesaele W, Vandevoort M. Implementing the robotic deep inferior epigastric perforator flap in daily practice: a series of 10 cases. J Plast Reconstr Aesthet Surg 2022;75:2577-83.

33. Besmens IS, Politikou O, Giovanoli P, Calcagni M, Lindenblatt N. Robotic microsurgery in extremity reconstruction - experience with a novel robotic system. Surg Innov 2024;31:42-7.

34. Wolfs JA, Schols RM, van Mulken TJ. Robotic microvascular and free flap surgery: overview of current robotic applications and introduction of a dedicated robot for microsurgery. In: Nikkhah, D., Rawlins, J., Pafitanis, G. (eds) Core Techniques in Flap Reconstructive Microsurgery. Springer, Cham; 2023.p.77-86.

35. Barbon C, Grünherz L, Uyulmaz S, Giovanoli P, Lindenblatt N. Exploring the learning curve of a new robotic microsurgical system for microsurgery. JPRAS Open 2022;34:126-33.

36. van Mulken TJM, Qiu SS, Jonis Y, et al. First-in-human integrated use of a dedicated microsurgical robot with a 4K 3D exoscope: the future of microsurgery. Life 2023;13:692.

37. Abdelrahman H, El-Menyar A, Peralta R, Al-Thani H. Application of indocyanine green in surgery: a review of current evidence and implementation in trauma patients. World J Gastrointest Surg 2023;15:757-75.

38. Burnier P, Niddam J, Bosc R, Hersant B, Meningaud JP. Indocyanine green applications in plastic surgery: a review of the literature. J Plast Reconstr Aesthet Surg 2017;70:814-27.

39. Bigdeli AK, Gazyakan E, Schmidt VJ, et al. Indocyanine green fluorescence for free-flap perfusion imaging revisited: advanced decision making by virtual perfusion reality in visionsense fusion imaging angiography. Surg Innov 2016;23:249-60.

40. Wu Y, Suo Y, Wang Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol 2022;10:1042546.

41. Van Den Hoven P, Verduijn PS, Van Capelle L, et al. Quantification of near-infrared fluorescence imaging with indocyanine green in free flap breast reconstruction. J Plast Reconstr Aesthet Surg 2022;75:1820-5.

42. Moyer HR, Losken A. Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plast Reconstr Surg 2012;129:1043-8.

43. Phillips BT, Lanier ST, Conkling N, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg 2012;129:778e-88e.

44. Cahill RA, O'Shea DF, Khan MF, et al. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br J Surg 2021;108:5-9.

45. Poplack SP, Park EY, Ferrara KW. Optical breast imaging: a review of physical principles, technologies, and clinical applications. J Breast Imaging 2023;5:520-37.

46. Oppermann C, Dohrn N, Yikilmaz H, Falk Klein M, Eriksen T, Gögenur I. Continuous organ perfusion monitoring using indocyanine green in a piglet model. Surg Endosc 2023;37:1601-10.

47. Karim S, Qadir A, Farooq U, Shakir M, Laghari AA. Hyperspectral imaging: a review and trends towards medical imaging. Curr Med Imaging 2022;19:417-27.

48. Studier-Fischer A, Seidlitz S, Sellner J, et al. Spectral organ fingerprints for machine learning-based intraoperative tissue classification with hyperspectral imaging in a porcine model. Sci Rep 2022;12:11028.

49. Thiem DGE, Frick RW, Goetze E, Gielisch M, Al-Nawas B, Kämmerer PW. Hyperspectral analysis for perioperative perfusion monitoring-a clinical feasibility study on free and pedicled flaps. Clin Oral Investig 2021;25:933-45.

50. Knoedler S, Hoch CC, Huelsboemer L, et al. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front Surg 2023;10:1130566.

51. Hummelink SLM, Paulus VAA, Wentink EC, Ulrich DJO. Development and evaluation of a remote patient monitoring system in autologous breast reconstruction. Plast Reconstr Surg Glob Open 2022;10:e4008.

52. Khavanin N, Darrach H, Kraenzlin F, Yesantharao PS, Sacks JM. The intra.Ox near-infrared spectrometer measures variations in flap oxygenation that correlate to flap necrosis in a preclinical rodent model. Plast Reconstr Surg 2021;147:1097-104.

53. Largo RD, Selber JC, Garvey PB, et al. Outcome analysis of free flap salvage in outpatients presenting with microvascular compromise. Plast Reconstr Surg 2018;141:20e-7e.

54. Xie R, Zhang Y, Liu Q, Huang X, Liu M. A wireless infrared thermometry device for postoperative flap monitoring: proof of concept in patients. Surg Innov 2023;30:636-9.

55. Oda H, Beker L, Kaizawa Y, et al. A novel technology for free flap monitoring: pilot study of a wireless, biodegradable sensor. J Reconstr Microsurg 2020;36:182-90.

56. Halani SH, Hembd AS, Li X, et al. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J Hand Microsurg 2022;14:10-8.

57. Guye ML, Motamed C, Chemam S, Leymarie N, Suria S, Weil G. Remote peripheral tissue oxygenation does not predict postoperative free flap complications in complex head and neck cancer surgery: a prospective cohort study. Anaesth Crit Care Pain Med 2017;36:27-31.

58. Marks H, Bucknor A, Roussakis E, et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci Adv 2020;6:eabd1061.

59. Khanna AK, Ahuja S, Weller RS, Harwood TN. Postoperative ward monitoring - why and what now? Best Pract Res Clin Anaesthesiol 2019;33:229-45.

60. Papavasiliou T, Ubong S, Khajuria A, Chatzimichail S, Chan JCY. 3D printed chest wall: a tool for advanced microsurgical training simulating depth and limited view. Plast Reconstr Surg Glob Open 2021;9:e3817.

61. Leung R, Shi G. Building your future holographic mentor: can we use mixed reality holograms for visual spatial motor skills acquisition in surgical education? Surg Innov 2024;31:82-91.

62. Favier V, Zemiti N, Caravaca Mora O, et al. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - a first step to create reliable customized simulators. PLoS One 2017;12:e0189486.

63. Lichtenstein JT, Zeller AN, Lemound J, et al. 3D-printed simulation device for orbital surgery. J Surg Educ 2017;74:2-8.

64. Lobb DC, Cottler P, Dart D, Black JS. The use of patient-specific three-dimensional printed surgical models enhances plastic surgery resident education in craniofacial surgery. J Craniofac Surg 2019;30:339-41.

65. Smith DM, Aston SJ, Cutting CB, Oliker A. Applications of virtual reality in aesthetic surgery. Plast Reconstr Surg 2005;116:898-904; discussion 905-6.

66. Smith DM, Oliker A, Carter CR, Kirov M, McCarthy JG, Cutting CB. A virtual reality atlas of craniofacial anatomy. Plast Reconstr Surg 2007;120:1641-6.

67. Tolsdorff B, Pommert A, Höhne KH, et al. Virtual reality: a new paranasal sinus surgery simulator. Laryngoscope 2010;120:420-6.

68. de Runz A, Boccara D, Bertheuil N, Claudot F, Brix M, Simon E. Three-dimensional imaging, an important factor of decision in breast augmentation. Ann Chir Plast Esthet 2018;63:134-9.

69. Lee GK, Moshrefi S, Fuertes V, Veeravagu L, Nazerali R, Lin SJ. What is your reality? Virtual, augmented, and mixed reality in plastic surgery training, education, and practice. Plast Reconstr Surg 2021;147:505-11.

Plastic and Aesthetic Research
ISSN 2349-6150 (Online)   2347-9264 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/