REFERENCES
1. Zhao, C.; Yang, L.; Sun, Y.; et al. Atmospheric emissions of hexachlorobutadiene in fine particulate matter from industrial sources. Nat. Commun. 2024, 15, 4737.
2. Brunet, C. E.; Marek, R. F.; Stanier, C. O.; Hornbuckle, K. C. Concentrations of volatile methyl siloxanes in New York City reflect emissions from personal care and industrial use. Environ. Sci. Technol. 2024, 58, 8835-45.
3. Pfannerstill, E. Y.; Arata, C.; Zhu, Q.; et al. Comparison between spatially resolved airborne flux measurements and emission inventories of volatile organic compounds in Los Angeles. Environ. Sci. Technol. 2023, 57, 15533-45.
4. He, Z.; Liu, P.; Zhao, X.; He, X.; Liu, J.; Mu, Y. Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014-2019: a study based on multiple linear regression and WRF-Chem. Sci. Total. Environ. 2022, 807, 150792.
5. Liu, S.; Li, X.; Wei, J.; et al. Short-term exposure to fine particulate matter and ozone: source impacts and attributable mortalities. Environ. Sci. Technol. 2024, 58, 11256-67.
6. Chu, P.; Zhang, L.; Wang, Z.; et al. Regulation lattice oxygen mobility via dual single atoms for simultaneously enhancing VOC oxidation and NOx reduction. Environ. Sci. Technol. 2024, 58, 17475-84.
7. Guo, M.; Ma, P.; Wang, J.; et al. Synergy in Au-CuO Janus structure for catalytic isopropanol oxidative dehydrogenation to acetone. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203827.
8. Zhang, H.; Dai, L.; Feng, Y.; et al. A Resource utilization method for volatile organic compounds emission from the semiconductor industry: selective catalytic oxidation of isopropanol to acetone over Au/α-Fe2O3 nanosheets. Appl. Catal. B. Environ. 2020, 275, 119011.
9. He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471-568.
10. Gunathilake, C.; Soliman, I.; Panthi, D.; et al. A comprehensive review on hydrogen production, storage, and applications. Chem. Soc. Rev. 2024, 53, 10900-69.
11. Miao, R.; He, Z.; Wu, B.; et al. Activated carbon-boosted BiOI in CO2 adsorption and electron transfer for photothermally catalyzed CO2 oxidative dehydrogenation of propane. Chem. Eng. J. 2024, 481, 148293.
12. Guo, M.; Ma, P.; Wei, L.; et al. Highly selective activation of C–H bond and inhibition of C–C bond cleavage by tuning strong oxidative Pd sites. J. Am. Chem. Soc. 2023, 145, 11110-20.
13. Rao, Z.; Wang, K.; Cao, Y.; et al. Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2. J. Am. Chem. Soc. 2023, 145, 24625-35.
14. Zhang, Y.; Wang, Y.; Xie, R.; et al. Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications. Environ. Sci. Technol. 2022, 56, 16582-601.
15. Sun, X.; Feng, Z.; Wang, S.; et al. Insight into the role of TiO2 facets in photocatalytic selective oxidation of p-xylene. ACS. Catal. 2024, 14, 5356-65.
16. Yuan, S.; Bao, X.; Chen, M.; et al. Unravelling the pathway determining the CO2 selectivity in photocatalytic toluene oxidation on TiO2 with different particle size. Chem. Eng. J. 2023, 470, 144138.
17. Liu, B.; Zhang, B.; Liu, B.; et al. Surface hydroxyl and oxygen vacancies engineering in ZnSnAl LDH: synergistic promotion of photocatalytic oxidation of aromatic VOCs. Environ. Sci. Technol. 2024, 58, 4404-14.
18. Zhang, H.; Gao, Y.; Meng, S.; et al. Metal sulfide S-scheme homojunction for photocatalytic selective phenylcarbinol oxidation. Adv. Sci. 2024, 11, 2400099.
19. Mehmood, S.; Sk, S.; Abraham, B. M.; Ahmadipour, M.; Pal, U.; Dutta, J. Recent advances in single-atom catalyst for solar energy conversion: a comprehensive review and future outlook. Adv. Funct. Mater. 2024, 2418602.
20. Dong, Y.; Song, R.; Zhang, Z.; et al. Advances in photothermal CO2 hydrogenation catalysis for C1 molecules. Cell. Rep. Phys. Sci. 2024, 5, 102227.
21. Zhang, Z.; Han, X.; Zhang, J.; et al. Revolutionizing photothermal CO2 hydrogenation with ceria-based catalysts. Nano. Res. 2025, 18, 94906998.
22. Sun, J.; Lian, G.; Chen, Z.; Zou, Z.; Wang, L. Merger of single-atom catalysis and photothermal catalysis for future chemical production. ACS. Nano. 2024, 18, 34572-95.
23. Wang, X.; Li, Z.; Gao, R.; et al. Photothermal catalytic removal of 1,2-DCE with high HCl selectivity over the Brønsted acid-enriched sulfur-doped MOFs. Environ. Sci. Technol. 2024, 58, 17190-200.
24. Feng, Y.; Wang, Z.; Hua, M.; et al. Differences between atomically-dispersed and particulate Pt supported catalysts on synergistic photothermocatalytic oxidation of VOCs from cooking oil fumes. Appl. Catal. B. Environ. 2023, 339, 123116.
25. Cheng, Q.; Yang, Z.; Li, Y.; Wang, J.; Wang, J.; Zhang, G. Amorphous/crystalline Cu1.5Mn1.5O4 with rich oxygen vacancies for efficiently photothermocatalytic mineralization of toluene. Chem. Eng. J. 2023, 471, 144295.
26. Wu, J.; Xiong, L.; Zhao, B.; Liu, M.; Huang, L. Densely populated single atom catalysts. Small. Methods. 2020, 4, 1900540.
27. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995, 378, 159-62.
28. Asakura, K.; Nagahiro, H.; Ichikuni, N.; Iwasawa, Y. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Appl. Catal. A. Gen. 1999, 188, 313-24.
29. Hackett, S. F.; Brydson, R. M.; Gass, M. H.; et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. Engl. 2007, 46, 8593-6.
30. Kwak, J. H.; Hu, J.; Mei, D.; et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670-3.
31. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.
32. Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155-74.
33. Chen, Y.; Lin, J.; Jia, B.; Wang, X.; Jiang, S.; Ma, T. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, e2201796.
34. Lowe, B.; Hellerstedt, J.; Matěj, A.; et al. Selective activation of aromatic C–H bonds catalyzed by single gold atoms at room temperature. J. Am. Chem. Soc. 2022, 144, 21389-97.
35. Zhou, J.; Pan, J.; Jin, Y.; et al. Single-cation catalyst: Ni cation in monolayered CuO for CO oxidation. J. Am. Chem. Soc. 2022, 144, 8430-3.
36. Cui, T.; Li, L.; Ye, C.; et al. Heterogeneous single atom environmental catalysis: fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.
37. Gong, S.; Ni, B.; He, X.; et al. Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol. Energy. Environ. Sci. 2023, 16, 5956-69.
38. Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 2024, 7, 207-18.
39. Li, X.; Pereira-Hernández, X. I.; Chen, Y.; et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284-8.
40. Qian, M.; Wu, X.; Lu, M.; et al. Modulation of charge trapping by island-like single-atom cobalt catalyst for enhanced photo-fenton-like reaction. Adv. Funct. Mater. 2023, 33, 2208688.
41. Shi, Y.; Zhou, Y.; Lou, Y.; Chen, Z.; Xiong, H.; Zhu, Y. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Adv. Sci. 2022, 9, 2201520.
42. Guo, Y.; Huang, Y.; Zeng, B.; et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat. Commun. 2022, 13, 2648.
43. Xie, B.; Hu, D.; Kumar, P.; Ordomsky, V. V.; Khodakov, A. Y.; Amal, R. Heterogeneous catalysis via light-heat dual activation: a path to the breakthrough in C1 chemistry. Joule 2024, 8, 312-33.
44. Wei, L.; Yu, C.; Yang, K.; Fan, Q.; Ji, H. Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chin. J. Catal. 2021, 42, 1078-95.
45. Qin, X.; Xu, M.; Guan, J.; et al. Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2-x/Ni photothermal catalyst. Nat. Energy. 2024, 9, 154-62.
46. Wang, Z.; Xie, S.; Feng, Y.; et al. Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Appl. Catal. B. Environ. 2021, 298, 120612.
47. Vikrant, K.; Weon, S.; Kim, K.; Sillanpää, M. Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants. Appl. Mater. Today. 2021, 23, 100993.
48. Yu, X.; Fan, S.; Zhu, B.; El-Hout, S. I.; Zhang, J.; Chen, C. Recent progress on photothermal nanomaterials: design, mechanism, and applications. Green. Energy. Environ. 2024.
49. Wang, M.; Jia, J.; Meng, Z.; et al. Plasmonic Pd-Sb nanosheets for photothermal CH4 conversion to HCHO and therapy. Sci. Adv. 2024, 10, eado9664.
50. Zhou, L.; Huang, Q.; Xia, Y. Plasmon-induced hot electrons in nanostructured materials: generation, collection, and application to photochemistry. Chem. Rev. 2024, 124, 8597-619.
51. Lee, A.; Wu, S.; Yim, J. E.; Zhao, B.; Sheldon, M. T. Hot electrons in a steady state: interband vs intraband excitation of plasmonic gold. ACS. Nano. 2024, 18, 19077-85.
52. Dong, S.; Zhao, Y.; Yang, J.; et al. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Appl. Catal. B. Environ. 2021, 291, 120127.
53. Xiang, Z.; Shi, Y.; Zhu, X.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nanomicro. Lett. 2021, 13, 150.
54. Zhou, J.; Liu, H.; Wang, H. Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 2023, 34, 107420.
55. Anderson, C. L.; Zhang, T.; Qi, M.; et al. Exceptional electron-rich heteroaromatic pentacycle for ultralow band gap conjugated polymers and photothermal therapy. J. Am. Chem. Soc. 2023, 145, 5474-85.
56. Shi, Y.; Wang, Y.; Meng, N.; Liao, Y. Photothermal conversion porous organic polymers: design, synthesis, and applications. Small. Methods. 2024, 8, e2301554.
57. Liu, Z.; Niu, L.; Zong, X.; et al. Ambient photothermal catalytic CO oxidation over a carbon-supported palladium catalyst. Appl. Catal. B. Environ. 2022, 313, 121439.
58. Elimian E, Zhang M, Sun Y, He J, Jia H. Harnessing solar energy towards synergistic photothermal catalytic oxidation of volatile organic compounds. Solar. RRL. 2023, 7, 2300238.
59. Chen, X.; Cai, S.; Yu, E.; Li, J.; Chen, J.; Jia, H. Photothermocatalytic performance of ACo2O4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation. Appl. Surf. Sci. 2019, 484, 479-88.
60. Li, J.; Yu, E.; Cai, S.; et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl. Catal. B. Environ. 2019, 240, 141-52.
61. Li, Y.; Liu, B.; Yuan, D.; et al. High-purity carbon monoxide production via photothermal formic acid decomposition over fluorite ZrO2. Nat. Catal. 2024, 7, 1350-8.
62. Shi, H.; Tian, C.; Liu, X.; et al. Ni-phyllosilicate nanotubes coated by CeO2 for ultra-efficiency of 36.9% and near-limit CO2 conversion in solar-driven conversion of CO2-to-fuel. Chem. Eng. J. 2023, 454, 140063.
63. Chai, H.; Xu, J.; Zhang, Z.; et al. Tuning surface defects of WO3-x for enhanced photothermal catalytic propane combustion. Appl. Surf. Sci. 2024, 657, 159709.
64. Ren, S.; Han, J.; Yang, Z.; et al. Near-unity photothermal CO2 hydrogenation to methanol based on a molecule/nanocarbon hybrid catalyst. Angew. Chem. Int. Ed. Engl. 2025, 64, e202416376.
65. Zhang, Z.; Mao, C.; Meira, D. M.; et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.
66. Cheng, Q.; Wang, K.; Yang, Z.; Li, Y.; Zhang, G. Surface oxygen vacancies induced by cu-doping in hexagonal ZnMn2O4 nanoplates for high efficiency photothermocatalytic oxidation of toluene. Sep. Purif. Technol. 2025, 354, 128743.
67. Fang, H.; Kang, Y.; Yuan, S.; Zhang, M.; Rui, Z. One step synthesis and interfacial properties of black Ag/TiO2-x for enhancing sunlight absorption with application to photothermocatalytic VOCs degradation. Appl. Surf. Sci. 2024, 655, 159519.
68. Mo, S.; Zhao, X.; Huang, L.; et al. Uncovering the role of unsaturated coordination defects in manganese oxides for concentrated solar-heating photothermal OVOCs oxidation: experimental and DFT explorations. Appl. Catal. B. Environ. 2024, 342, 123435.
69. Elimian, E. A.; Zhang, M.; Chen, J.; Jia, H.; Sun, Y.; He, J. Construction of Pt-mTiO2/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene. Appl. Catal. B. Environ. 2022, 307, 121203.
70. Zhang, J.; Chen, H.; Duan, X.; Sun, H.; Wang, S. Photothermal catalysis: from fundamentals to practical applications. Mater. Today. 2023, 68, 234-53.
71. Liu, S.; Wang, X.; Chen, Y.; et al. Efficient thermal management with selective metamaterial absorber for boosting photothermal CO2 hydrogenation under sunlight. Adv. Mater. 2024, 36, e2311957.
72. Yang, Z.; Wu, Z. Y.; Lin, Z.; et al. Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis. Nat. Commun. 2024, 15, 7599.
73. Du, K.; Guo, J.; Song, C.; et al. Persistent photothermal CO2 methanation without external energy input. Energy. Environ. Sci. 2025, 18, 1255-61.
74. Liu, B.; Wu, H.; Parkin, I. P. Gaseous photocatalytic oxidation of formic acid over TiO2: a comparison between the charge carrier transfer and light-assisted Mars-van Krevelen pathways. J. Phys. Chem. C. 2019, 123, 22261-72.
75. Feng, Y.; Ma, P.; Wang, Z.; et al. Synergistic effect of reactive oxygen species in photothermocatalytic removal of VOCs from cooking oil fumes over Pt/CeO2/TiO2. Environ. Sci. Technol. 2022, 56, 17341-51.
76. Jiang, Y.; Li, S.; Wang, S.; et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698-707.
77. Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2022, 2, 52-83.
78. Zhang, J.; Li, Y.; Sun, J.; et al. Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Appl. Catal. B. Environ. 2022, 309, 121263.
79. Lu, J.; Chen, Z.; Shen, Y.; et al. Boosting photothermal-assisted photocatalytic H2 production over black g-C3N4 nanosheet photocatalyst via incorporation with carbon dots. J. Colloid. Interface. Sci. 2024, 670, 428-38.
80. Imai, K.; Fukushima, T.; Kobayashi, H.; Higashimoto, S. Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy. Appl. Catal. B. Environ. Energy. 2024, 346, 123745.
81. He, T.; Rong, S.; Ding, D.; Zhou, Y.; Zhang, N.; He, W. Facet-controlled synthesis of Mn3O4 nanorods for photothermal synergistic catalytic oxidation of carcinogenic airborne formaldehyde. ACS. Catal. 2023, 13, 8049-62.
82. Feng, X.; Liu, D.; Yan, B.; et al. Highly active PdO/Mn3O4/CeO2 nanocomposites supported on one dimensional halloysite nanotubes for photoassisted thermal catalytic methane combustion. Angew. Chem. Int. Ed. Engl. 2021, 60, 18552-6.
83. Tang, Y.; Wu, S.; Wang, Y.; et al. Photo-assisted catalytic CO2 hydrogenation to CO with nearly 100% selectivity over Rh/TiO2 catalysts. Energy. Fuels. 2023, 37, 539-46.
84. Song, X.; Fan, S.; Cai, Z.; et al. NH3 synthesis via visible-light-assisted thermocatalytic NO reduction by CO in the presence of H2O over Cu/CeO2. Chin. J. Cataly. 2023, 49, 168-79.
85. Ning, S.; Ou, H.; Li, Y.; et al. Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302253.
86. Wang, S.; Yuan, F.; Liang, J.; et al. Enhanced photo-assisted thermal catalytic oxidation of formaldehyde via abundant surface adsorbed oxygen in Co3O4 with the assistance of natural zeolite. Micropor. Mesopor. Mat. 2025, 382, 113401.
87. Yang, Y.; Zhao, S.; Bi, F.; et al. Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: the crucial roles of interface defects and band structure. Appl. Catal. B. Environ. 2022, 315, 121550.
88. Sun, C.; Zhao, K.; Boies, A.; Xiao, S.; Yi, Z. Boosting total oxidation of methane over NiO nanocrystalline decorated ZnO-CoNi solid solution via photothermal synergism. Appl. Catal. B. Environ. 2023, 339, 123124.
89. Jiang, S.; Li, C.; Muhammad, Y.; et al. Solvent-induced fabrication of Cu/MnOx nanosheets with abundant oxygen vacancies for efficient and long-lasting photothermal catalytic degradation of humid toluene vapor. Appl. Catal. B. Environ. 2023, 328, 122509.
90. Wang, H.; Zhao, Q.; Li, D.; et al. Boosting photothermocatalytic oxidation of toluene over Pt/N-TiO2: the gear effect of light and heat. Environ. Sci. Technol. 2024, 58, 7662-71.
91. Hao, Y.; Zhang, X.; Zhang, H.; et al. Contributions of surface oxygen species and photoinduced holes on photothermocatalytic toluene oxidation over CeO2–MgO. ACS. Appl. Nano. Mater. 2023, 6, 9385-96.
92. Li, Y.; Zhang, Q.; Chong, Y.; et al. Efficient photothermal catalytic oxidation enabled by three-dimensional nanochannel substrates. Environ. Sci. Technol. 2024, 58, 5153-61.
93. Zhang, N.; He, W.; Cheng, Z.; et al. Construction of α-MnO2/g-C3N4 Z-scheme heterojunction for photothermal synergistic catalytic decomposition of formaldehyde. Chem. Eng. J. 2023, 466, 143160.
94. Kang, L.; Liu, X. Y.; Wang, A.; et al. Photo-thermo catalytic oxidation over a TiO2-WO3-supported platinum catalyst. Angew. Chem. Int. Ed. Engl. 2020, 59, 12909-16.
95. Ren, Y.; Si, Y.; Du, M.; et al. Photothermal synergistic effect induces bimetallic cooperation to modulate product selectivity of CO2 reduction on different CeO2 crystal facets. Angew. Chem. Int. Ed. Engl. 2024, 63, e202410474.
96. Kong, J.; Song, S.; Zhao, W.; et al. Unraveling a trade-off between positive effect and poisoning mechanism of soot over low-dose PtCu/CeO2 for simultaneously photothermocatalytic removal of VOCs and soot. Appl. Catal. B. Environ. 2023, 339, 123118.
97. Zhang, J.; Zhao, C.; Zou, M.; et al. An effective strategy to improve the photothermocatalytic activity of Co3O4 for VOCs degradation: specifically enhancing the surface lattice oxygen activity. Sep. Purif. Technol. 2023, 327, 124905.
98. Su, D. W.; Ran, J.; Zhuang, Z. W.; et al. Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Sci. Adv. 2020, 6, eaaz8447.
99. Liu, Y.; Sun, Y.; Zhao, E.; et al. Atomically dispersed silver-cobalt dual-metal sites synergistically promoting photocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2301840.
100. Niu, X.; Zhu, Q.; Jiang, S.; Zhang, Q. Photoexcited electron dynamics of nitrogen fixation catalyzed by ruthenium single-atom catalysts. J. Phys. Chem. Lett. 2020, 11, 9579-86.
101. Xue, Z.; Yang, J.; Ma, L.; et al. Efficient benzylic C–H bond activation over single-atom yttrium supported on TiO2 via facilitated molecular oxygen and surface lattice oxygen activation. ACS. Catal. 2024, 14, 249-61.
102. Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS. Catal. 2023, 13, 2981-97.
103. Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano. Res. 2020, 13, 1842-55.
104. Feng, Y.; Wang, C.; Wang, C.; et al. Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. J. Hazard. Mater. 2022, 424, 127337.
105. Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 2021, 55, 4268-86.
106. Han, W.; Ling, W.; Gao, P.; Dong, F.; Tang, Z. Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs. Appl. Catal. B. Environ. 2024, 345, 123687.
107. Wang, B.; Yang, Q.; Li, B.; et al. Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Appl. Catal. B. Environ. 2023, 332, 122753.
108. Fang, Y.; Zhang, Q.; Zhang, H.; et al. Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212273.
109. Liu, S.; Niu, S.; Liu, J.; Wang, D.; Wang, Y.; Han, K. Mechanism of formaldehyde oxidation catalyzed by doped graphene single atom catalysts: density functional theory study. Mol. Catal. 2022, 528, 112516.
110. Lv, H.; Guo, W.; Chen, M.; Zhou, H.; Wu, Y. Rational construction of thermally stable single atom catalysts: from atomic structure to practical applications. Chin. J. Catal. 2022, 43, 71-91.
111. Hou, Z.; Lu, Y.; Liu, Y.; et al. A general dual-metal nanocrystal dissociation strategy to generate robust high-temperature-stable alumina-supported single-atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869-78.
112. Xia, D.; Liu, H.; Xu, B.; et al. Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light. Appl. Catal. B. Environ. 2019, 245, 177-89.
113. Xu, W.; Sun, B.; Wu, F.; et al. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem. Eng. J. 2022, 438, 135636.
114. Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Solar. RRL. 2021, 5, 2000313.
115. Feng, Y.; Qin, J.; Zhou, Y.; Yue, Q.; Wei, J. Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid. Interface. Sci. 2022, 606, 826-36.
116. Wang, Y.; Liu, H.; Shi, Q.; et al. Single-atom titanium on mesoporous nitrogen, oxygen-doped carbon for efficient photo-thermal catalytic CO2 cycloaddition by a radical mechanism. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404911.
117. Huang, J.; Liu, T.; Wang, K.; et al. Room-temperature and carbon-negative production of biodiesel via synergy of geminal-atom and photothermal catalysis. Environ. Chem. Lett. 2024, 22, 1607-13.
118. Zhou, S.; Shang, L.; Zhao, Y.; et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, e1900509.
119. Mo, S.; Zhao, X.; Li, S.; et al. Non-interacting Ni and Fe dual-atom pair sites in N-doped carbon catalysts for efficient concentrating solar-driven photothermal CO2 reduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202313868.
120. Yuan, D.; Han, G.; Wang, Z.; et al. Hybrid structure of iron single atoms and metallic titanium for photothermal ethanol steam reforming. Sci. China. Chem. 2024, 67, 848-54.
121. Feng, Y.; Dai, L.; Wang, Z.; et al. Photothermal synergistic effect of Pt1/CuO-CeO2 single-atom catalysts significantly improving toluene removal. Environ. Sci. Technol. 2022, 56, 8722-32.
122. Zhang, Z.; Li, T.; Sun, X.; et al. Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst. J. Catal. 2024, 430, 115303.
123. Zhang, Z.; Huang, Z.; Yu, X.; et al. Photo-thermal coupled single-atom catalysis boosting dry reforming of methane beyond thermodynamic limits over high equivalent flow. Nano. Energy. 2024, 123, 109401.
124. Zhu, R.; Kang, L.; Li, L.; et al. Photo-thermo catalytic oxidation of C3H8 and C3H6 over the WO3-TiO2 supported Pt single-atom catalyst. Acta. Phys. Chim. Sin. 2024, 40, 2303003.